Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56538
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaleniuk, Maksym
dc.contributor.authorFurman, Oleg
dc.contributor.authorPostranskyy, Taras
dc.date.accessioned2021-12-21T11:11:51Z-
dc.date.available2021-12-21T11:11:51Z-
dc.date.created2021-03-10
dc.date.issued2021-03-10
dc.identifier.citationKaleniuk M. Influence of traffic flow intensity on environmental noise pollution / Maksym Kaleniuk, Oleg Furman, Taras Postranskyy // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 39–49.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56538-
dc.description.abstractСучасне міське середовище із розвитком промисловості, зростанням кількості транспортних засобів на дорогах та збільшенням щільності забудови все більш негативно впливає на здоров’я і благополуччя населення міста. Серед чинників впливу навколишнього середовища шумове забруднення, зокрема техногенний шум – небажані та шкідливі звуки, що створюються в результаті діяльності людини. Сьогодні шум є одним з найпоширеніших чинників забруднення. Найпоширенішим джерелом шумового забруднення є транспорт, зокрема легкові та вантажні автомобілі, автобуси, залізничний транспорт, літаки тощо. Негативним наслідкомм транспортного шуму є те, що практично кожна людина значною мірою зазнає його впливу. Часто це може супроводжуватися іншими шкідливими чинниками, наприклад, вібрацією. Згідно з науковими дослідженнями, шум може викликати роздратованість через постійний акустичний вплив. Унаслідок цього у людини виникають порушення сну, спостерігається зниження розумової працездатності та розвивається стрес. Транспортний шум створюють робота двигунів, тертя коліс об дорожнє покриття, гальма та аеродинамічні особливості транспортних засобів тощо. Загалом, рівень транспортного шуму залежить від таких основних показників, як інтенсивність, швидкість та склад транспортного потоку. Тому важливим завданням є дослідження автотранспортного шуму, його вимірювання, встановлення відповідних залежностей та подальше оцінювання результатів. Знаючи рівень шуму, створюваного транспортними засобами, можна вживати заходів щодо його зниження. Це, наприклад, перерозподіл руху транспортних потоків по вулично-дорожній мережі, обмеження швидкості руху, покращення якості дорожнього покриття, використання основних засобів зниження шумового забруднення, застосування шумозахисних пристроїв тощо. На основі цього можна знизити негативний вплив шумового забруднення на організм людини та довкілля загалом.
dc.description.abstractThe modern urban environment, with the development of industry, the growth of the vehicle's number on the roads, and the increase in the density of buildings, is increasingly capable of negatively affect the health and well-being of the city's population. Among the factors influencing the environment is noise pollution, namely man-made noise – unwanted and harmful sounds created as a result of human activities. Today, noise is one of the most common factors of pollution among all others. The most common source of noise pollution is transport, including cars and trucks, buses, railways, airplanes, etc. The negative phenomenon of traffic noise is that almost everyone is greatly affected. This can often be accompanied by other harmful factors, such as vibration. According to scientific researches, noise can cause irritation under constant acoustic exposure. As a result, there are sleep disorders, decreased mental capacity, and the development of stress, and stress development in humans. Traffic noise is created from the operation of engines, the friction of wheels with the road surface, brakes, and aerodynamic features of vehicles, etc. In general, the level of traffic noise depends on such basic indicators as the intensity, speed, and composition of the traffic flow. Therefore, an important task is the study of traffic noise, its measurement, the establishment of appropriate dependencies, and further evaluation of the results. Knowing the level of noise generated by vehicles, further measures to reduce it are possible, such as redistribution of traffic flows on the road network, speed limits, improving the quality of the road surface, the use of basic means of reducing noise pollution, the use of noise protection devices, etc. Based on this, the negative impact of this phenomenon on the human body and the environment, in general, can be reduced.
dc.format.extent39-49
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTransport Technologies, 1 (2), 2021
dc.relation.urihttp://transspot.ru/2013/03/05/skorost-avtomobilya-i-okruzhayushhaya-sreda-chast-2/
dc.relation.urihttp://www.noiseview.ru/acoustic/about/
dc.relation.urihttps://www.szflus.com/products/et-965-in-1-environment-meter/
dc.subjectтранспортний потік
dc.subjectшумове забруднення
dc.subjectінтенсивність транспортного потоку
dc.subjectшумомір
dc.subjectдорожнє покриття
dc.subjecttraffic flow
dc.subjectnoise pollution
dc.subjecttraffic flow intensity
dc.subjectnoise meter
dc.subjectroad surface
dc.subjecttraffic flow composition
dc.titleInfluence of traffic flow intensity on environmental noise pollution
dc.title.alternativeВплив інтенсивності транспортного потоку на шумове забруднення довкілля
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Kaleniuk M., Furman O., Postranskyy T., 2021
dc.contributor.affiliationMillhouse Logistics Inc
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages11
dc.identifier.citationenKaleniuk M. Influence of traffic flow intensity on environmental noise pollution / Maksym Kaleniuk, Oleg Furman, Taras Postranskyy // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 39–49.
dc.identifier.doidoi.org/ 10.23939/tt2021.01.039
dc.relation.references1. Jacyna, M., Wasiak, M., Lewczuk, K., & Karoń, G. (2017). Noise and environmental pollution from transport: decisive problems in developing ecologically efficient transport systems. Journal of Vibroengineering, Volume 19, Issue 7, 5639–5655. doi: 10.21595/jve.2017.19371 (in English)
dc.relation.references2. Eze, I., Foraster, M., Schaffner, E., Vienneau, D., Héritier, H., Pieren, R., & et al. (2018). Transportation noise exposure, noise annoyance and respiratory health in adults: A repeated-measures study. Environment international, Volume 121, 741-750. doi: 10.1016/j.envint.2018.10.006 (in English)
dc.relation.references3. Koch, C. (2017). Hearing beyond the limit: Measurement, perception and impact of infrasound and ultrasonic noise. 12th ICBEN Congress on Noise as a Public Health Problem, Zurich. (in English)
dc.relation.references4. Khan, J., Ketzel, M., Kakosimos, K., Sørensen, M., & Jensen, S. S. (2018). Road traffic air and noise pollution exposure assessment – A review of tools and techniques. Science of The Total Environment, Volume 634, 661-676. doi: 10.1016/j.scitotenv.2018.03.374 (in English)
dc.relation.references5. Anees, M., Qasim, M., & Bashir, A. (2017). Physiological and physical impact of noise pollution on environment. Earth Science Pakistan, Volume 1(1), 08–11. doi: 10.26480/esp.01.2017.08.10 (in English)
dc.relation.references6. Morillas, J., Gozalo, G., González, D., Moraga, P., & Vílchez-Gómez, R. (2018). Noise pollution and urban planning. Current Pollution Reports, Volume 4(3), 208-219. doi: 10.1007/s40726-018-0095-7 (in English)
dc.relation.references7. Mavrin, V., Makarova, I., & Prikhodko, A. (2018). Assessment of the influence of the noise level of road transport on the state of the environment. Transportation research procedia, Volume 36, 514-519. doi: 10.1016/j.trpro.2018.12.138 (in English)
dc.relation.references8. Shevchenko Yu. (2016). Development of models for estimating and improving the efficiency of reducing traffic noise. Extended abstract of candidate’s thesis. Kyiv (in Ukrainian).
dc.relation.references9. Skorost avtomobylia i okruzhaiushchaia sreda. Chast 2. [Vehicle speed and environment. Part 2] Retrieved from: http://transspot.ru/2013/03/05/skorost-avtomobilya-i-okruzhayushhaya-sreda-chast-2/ (in Russian)
dc.relation.references10. Vázquez, V., & Paje, S. (2016). Study of the road surface properties that control the acoustic performance of a rubberised asphalt mixture. Applied Acoustics, Volume 102, 33–39. doi: 10.1016/j.apacoust.2015.09.008 (in English)
dc.relation.references11. Yang, W., Cai, M., & Luo, P. (2020). The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles. Applied Acoustics, Volume 160, 107–128. doi: 10.1016/j.apacoust.2019.107128 (in English)
dc.relation.references12. Aletta, F., Brinchi, S., Carrese, S., Gemma, A., Guattari, C., Mannini, L., & Patella, S. M. (2020). Analysing urban traffic volumes and mapping noise emissions in Rome (Italy) in the context of containment measures for the COVID-19 disease. Noise Mapping, Volume 7(1), 114–122. doi: 10.1515/noise-2020-0010 (in English)
dc.relation.references13. Okokon, E., Yli-Tuomi, T., Turunen, A., Taimisto, P., Pennanen, A., Vouitsis, I., & et al. (2017). Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environmental research, Volume 154, 181–189. doi: 10.1016/j.envres.2016.12.012 (in English)
dc.relation.references14. Shum. Terminy ta vyznachennia [Noise. Terms and definitions]. (1995). DSTU ISO 2325-93 from 01th January 1995. Kyiv: Derzhstandart Ukraine (in Ukrainian)
dc.relation.references15. ARM “Akustyka” [APM “Acoustics”] Retrieved from: http://www.noiseview.ru/acoustic/about/ (in Russian)
dc.relation.references16. Mateichyk V., Weigang G. & Yanovskyi V. (2016). Otsinka parametrychnoho zabrudnennia prydorozhnoho seredovyshcha miskymy transportnymy potokamy [Assessment of parametric environmental pollution of roadside by city traffic flow]. Naukovo-tekhnichnyi zbirnyk “Visnyk Natsionalnoho transportnoho universytetu” [The National Transport University Bulletin: A Scientific and Technical Journal], Volume 2, 141–150. (in Ukrainian)
dc.relation.references17. Nastanova z rozrakhunku ta proektuvannia zakhystu vid shumu selbyshchnykh terytorii [Guidelines for the calculation and design of noise protection of residential areas]. (2014). DSTU ISO N B V.1.1-33: 2013 from 01th January 2014. Kyiv: Ministry of Regional Development (in Ukrainian)
dc.relation.references18. ET-965 IN 1 Environment Meter. Retrieved from: https://www.szflus.com/products/et-965-in-1-environment-meter/ (in English)
dc.relation.references19. Hrytsun O. (2019). Justification of rational regimes of traffic light control taking into account traffic flow characteristics and pedestrian behavior. Extended abstract of candidate’s thesis. Lviv: Lviv Polytechnic National University (in Ukrainian).
dc.relation.references20. Avtomobilni dorohy. Chastyna I. Proektuvannia. Chastyna II. Budivnytstvoennia [Automobile roads. Part I Design. Part II Construction]. (2015). DBN ISO V. 2.3-4: 2015 from 21th September 2015. Kyiv: Ministry of Regional Development (in Ukrainian)
dc.relation.references21. Zakhyst terytorii budynkiv i sporud vid shumu [Protection of territories, buildings and structures from noise]. (2013). DBN ISO V.1.1-31:2013 from 01th June 2014. Kyiv: Ministry of Regional Development (in Ukrainian)
dc.relation.referencesen1. Jacyna, M., Wasiak, M., Lewczuk, K., & Karoń, G. (2017). Noise and environmental pollution from transport: decisive problems in developing ecologically efficient transport systems. Journal of Vibroengineering, Volume 19, Issue 7, 5639–5655. doi: 10.21595/jve.2017.19371 (in English)
dc.relation.referencesen2. Eze, I., Foraster, M., Schaffner, E., Vienneau, D., Héritier, H., Pieren, R., & et al. (2018). Transportation noise exposure, noise annoyance and respiratory health in adults: A repeated-measures study. Environment international, Volume 121, 741-750. doi: 10.1016/j.envint.2018.10.006 (in English)
dc.relation.referencesen3. Koch, C. (2017). Hearing beyond the limit: Measurement, perception and impact of infrasound and ultrasonic noise. 12th ICBEN Congress on Noise as a Public Health Problem, Zurich. (in English)
dc.relation.referencesen4. Khan, J., Ketzel, M., Kakosimos, K., Sørensen, M., & Jensen, S. S. (2018). Road traffic air and noise pollution exposure assessment – A review of tools and techniques. Science of The Total Environment, Volume 634, 661-676. doi: 10.1016/j.scitotenv.2018.03.374 (in English)
dc.relation.referencesen5. Anees, M., Qasim, M., & Bashir, A. (2017). Physiological and physical impact of noise pollution on environment. Earth Science Pakistan, Volume 1(1), 08–11. doi: 10.26480/esp.01.2017.08.10 (in English)
dc.relation.referencesen6. Morillas, J., Gozalo, G., González, D., Moraga, P., & Vílchez-Gómez, R. (2018). Noise pollution and urban planning. Current Pollution Reports, Volume 4(3), 208-219. doi: 10.1007/s40726-018-0095-7 (in English)
dc.relation.referencesen7. Mavrin, V., Makarova, I., & Prikhodko, A. (2018). Assessment of the influence of the noise level of road transport on the state of the environment. Transportation research procedia, Volume 36, 514-519. doi: 10.1016/j.trpro.2018.12.138 (in English)
dc.relation.referencesen8. Shevchenko Yu. (2016). Development of models for estimating and improving the efficiency of reducing traffic noise. Extended abstract of candidate’s thesis. Kyiv (in Ukrainian).
dc.relation.referencesen9. Skorost avtomobylia i okruzhaiushchaia sreda. Chast 2. [Vehicle speed and environment. Part 2] Retrieved from: http://transspot.ru/2013/03/05/skorost-avtomobilya-i-okruzhayushhaya-sreda-chast-2/ (in Russian)
dc.relation.referencesen10. Vázquez, V., & Paje, S. (2016). Study of the road surface properties that control the acoustic performance of a rubberised asphalt mixture. Applied Acoustics, Volume 102, 33–39. doi: 10.1016/j.apacoust.2015.09.008 (in English)
dc.relation.referencesen11. Yang, W., Cai, M., & Luo, P. (2020). The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles. Applied Acoustics, Volume 160, 107–128. doi: 10.1016/j.apacoust.2019.107128 (in English)
dc.relation.referencesen12. Aletta, F., Brinchi, S., Carrese, S., Gemma, A., Guattari, C., Mannini, L., & Patella, S. M. (2020). Analysing urban traffic volumes and mapping noise emissions in Rome (Italy) in the context of containment measures for the COVID-19 disease. Noise Mapping, Volume 7(1), 114–122. doi: 10.1515/noise-2020-0010 (in English)
dc.relation.referencesen13. Okokon, E., Yli-Tuomi, T., Turunen, A., Taimisto, P., Pennanen, A., Vouitsis, I., & et al. (2017). Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environmental research, Volume 154, 181–189. doi: 10.1016/j.envres.2016.12.012 (in English)
dc.relation.referencesen14. Shum. Terminy ta vyznachennia [Noise. Terms and definitions]. (1995). DSTU ISO 2325-93 from 01th January 1995. Kyiv: Derzhstandart Ukraine (in Ukrainian)
dc.relation.referencesen15. ARM "Akustyka" [APM "Acoustics"] Retrieved from: http://www.noiseview.ru/acoustic/about/ (in Russian)
dc.relation.referencesen16. Mateichyk V., Weigang G. & Yanovskyi V. (2016). Otsinka parametrychnoho zabrudnennia prydorozhnoho seredovyshcha miskymy transportnymy potokamy [Assessment of parametric environmental pollution of roadside by city traffic flow]. Naukovo-tekhnichnyi zbirnyk "Visnyk Natsionalnoho transportnoho universytetu" [The National Transport University Bulletin: A Scientific and Technical Journal], Volume 2, 141–150. (in Ukrainian)
dc.relation.referencesen17. Nastanova z rozrakhunku ta proektuvannia zakhystu vid shumu selbyshchnykh terytorii [Guidelines for the calculation and design of noise protection of residential areas]. (2014). DSTU ISO N B V.1.1-33: 2013 from 01th January 2014. Kyiv: Ministry of Regional Development (in Ukrainian)
dc.relation.referencesen18. ET-965 IN 1 Environment Meter. Retrieved from: https://www.szflus.com/products/et-965-in-1-environment-meter/ (in English)
dc.relation.referencesen19. Hrytsun O. (2019). Justification of rational regimes of traffic light control taking into account traffic flow characteristics and pedestrian behavior. Extended abstract of candidate’s thesis. Lviv: Lviv Polytechnic National University (in Ukrainian).
dc.relation.referencesen20. Avtomobilni dorohy. Chastyna I. Proektuvannia. Chastyna II. Budivnytstvoennia [Automobile roads. Part I Design. Part II Construction]. (2015). DBN ISO V. 2.3-4: 2015 from 21th September 2015. Kyiv: Ministry of Regional Development (in Ukrainian)
dc.relation.referencesen21. Zakhyst terytorii budynkiv i sporud vid shumu [Protection of territories, buildings and structures from noise]. (2013). DBN ISO V.1.1-31:2013 from 01th June 2014. Kyiv: Ministry of Regional Development (in Ukrainian)
dc.citation.issue1
dc.citation.spage39
dc.citation.epage49
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Transport Technologies. – 2021. – Vol. 2, No. 1

Files in This Item:
File Description SizeFormat 
2021v2n1_Kaleniuk_M-Influence_of_traffic_flow_39-49.pdf576.39 kBAdobe PDFView/Open
2021v2n1_Kaleniuk_M-Influence_of_traffic_flow_39-49__COVER.png391.13 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.