DC Field | Value | Language |
dc.contributor.author | Мазуренко, Леонід | |
dc.contributor.author | Гребєніков, Віктор | |
dc.contributor.author | Джура, Олександр | |
dc.contributor.author | Шихненко, Максим | |
dc.contributor.author | Mazurenko, Leonid | |
dc.contributor.author | Grebenikov, Viktor | |
dc.contributor.author | Dzhura, Oleksandr | |
dc.contributor.author | Shykhnenko, Maksym | |
dc.date.accessioned | 2021-03-29T10:31:58Z | - |
dc.date.available | 2021-03-29T10:31:58Z | - |
dc.date.created | 2020-02-24 | |
dc.date.issued | 2020-02-24 | |
dc.identifier.citation | Modeling and Control of an Electromechanical System with a Permanent Magnet Generator and a Voltage Source Converter / Leonid Mazurenko, Viktor Grebenikov, Oleksandr Dzhura, Maksym Shykhnenko // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 2. — P. 13–20. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56264 | - |
dc.description.abstract | На основі математичних моделей структурних елементів розроблено імітаційні моделі для аналізу характеристик і
перехідних процесів електромеханічних систем побудованих на основі електричного генератора на постійних магнітах
(ГПМ) змінної частоти обертання і напівпровідникового регулятора (НР) напруги, що виконаний за схемою трифазного автономного інвертора напруги. На підключене до кола
постійного струму кероване резистивне навантаження покладено функцію стабілізації напруги в колі постійного струму
системи для моделювання режиму генерації активної потужності в мережу через мережевий інвертор. Розглянуто
два варіанти реалізації алгоритму відпрацювання оптимальної траєкторії руху в координатах аеродинамічна потужність –
частота обертання приводної вітротурбіни ГПМ, які повинні забезпечувати максимізацію відбору потужності від турбіни. З
використанням розроблених імітаційних моделей досліджено електромеханічні процеси в системі ГПМ-НР при змінній
потужності приводної турбіни за векторного керування електромагнітним моментом генератора. За результатами
чисельних досліджень проведено аналіз електромеханічних процесів в системі і порівняння ефективності застосування запропонованих
алгоритмів. | |
dc.description.abstract | In the paper simulation dynamic models for
the analysis of characteristics and transients of electromechanical system using a permanent magnet electric
generator (PMG) connected to a variable speed fixed pitch
wind turbine (WT) and a voltage source converter (VSC)
mathematical models are developed. The system supplies
a direct current (dc) resistive load through a controlled
switch. The objective of the controlled resistive load
connected to the VSC dc circuit of the system is to
perform the dc output voltage stabilization for simulating
the mode of generating the active power into a grid via a
grid invertor. Two algorithm structures of realization of
tracking the optimal WT motion trajectory in the coordinates
“WT aerodynamical power – rotary speed” have been
considered. The tracking algorithms function is to provide
the maximization of power extraction from wind flow by
WT. Electromechanical processes in the PMG – VSC
system for both tracking algorithms have been investigated
using developed dynamic simulation models and vector
control technique of electromagnetic torque of the generator
at variable WT mechanical power. The results of numerical
investigations of the electromagnetic processes in the system
have been analized. The efficiencies of the proposed
control algorithms applied to the VSC in the considered
electromechanical system have been compared and discussed. | |
dc.format.extent | 13-20 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 2 (10), 2020 | |
dc.relation.uri | http://epublications.marquette.edu/theses_open/215 | |
dc.subject | permanent magnet generator | |
dc.subject | voltage source converter | |
dc.subject | wind turbine | |
dc.subject | MPPT algorithm | |
dc.subject | simulation | |
dc.title | Modeling and Control of an Electromechanical System with a Permanent Magnet Generator and a Voltage Source Converter | |
dc.title.alternative | Математичне моделювання і алгоритми керування електромеханічної системи з генератором на постійних магнітах і напівпровідниковим регулятором напруги | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.contributor.affiliation | The Institute of Electrodynamics of the National Academy of Sciences of Ukraine | |
dc.format.pages | 8 | |
dc.identifier.citationen | Modeling and Control of an Electromechanical System with a Permanent Magnet Generator and a Voltage Source Converter / Leonid Mazurenko, Viktor Grebenikov, Oleksandr Dzhura, Maksym Shykhnenko // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 2. — P. 13–20. | |
dc.relation.references | [1] A. Rolan, A. Luna, G. Vazquez, D. Aguilar and G. Azevedo, “Modeling of a variable speed wind turbine with a Permanent Magnet Synchronous Generator”, 2009 IEEE International Symposium on Industrial Electronics, pp. 734–739, Seoul, South Korea, 2009. doi: 10.1109/ISIE.2009.5218120. | |
dc.relation.references | [2] W. Qiao, L. Qu and R. G. Harley, “Control of IPM Synchronous Generator for Maximum Wind Power Generation Considering Magnetic Saturation”, in IEEE Transactions on Industry Applications, vol. 45, no. 3, pp. 1095–1105, May-june 2009. doi: 10.1109/TIA.2009.2018914. | |
dc.relation.references | [3] V. V. Grebenikov and R. V. Gamaliia, “Comparative Analysis of Two Types of Generators with Permanent Magnets for Wind Turbine”, 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 126–129, Kremenchuk, Ukraine, 2019. doi: 10.1109/MEES.2019.8896375. | |
dc.relation.references | [4] L. I. Mazurenko, O. V. Dzhura, M. V. Kramar, and M. O. Shykhnenko, “Wind energy conversion system with induction generators connected to a single static compensator”, 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 258–261, Kremenchuk, Ukraine, 2019. doi: 10.1109/ MEES.2019.8896405 | |
dc.relation.references | [5] A. Hemeida, W. A. Farag, and O. A. Mahgoub, “Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines”, World Academy of Science, Engineering and Technology, pp. 1269–1275, At Venice, Italy, 2011. | |
dc.relation.references | [6] Huang, Nantao, “Simulation of Power Control of a Wind Turbine Permanent Magnet Synchronous Generator System”, http://epublications.marquette.edu/theses_open/215, 2013. | |
dc.relation.references | [7] L. I. Mazurenko and O. V. Dzhura, “The mathematical model of a stand-alone power generating complex containing two asynchronous generators and a single semiconductor converter for excitation”, Pratsi Instytutu electrodynamiky Natsionalnoi akademii nauk Ukrainy, no. 44, pp. 69–78, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016. (Ukrainian) | |
dc.relation.references | [8] L.I. Mazurenko and O. V. Dzhura, “Mathematical model and control algorithm of an unregulated wind turbine and IEIG-based isolated energy system”, Electromechanical and energy saving systems, no. 3/2018(43), pp. 24–30, Kremenchuk, Ukraine: Kremenchuk National University, 2018. doi: 10.30929/2072-2052.2018.3.43.24-30. (Ukrainian | |
dc.relation.referencesen | [1] A. Rolan, A. Luna, G. Vazquez, D. Aguilar and G. Azevedo, "Modeling of a variable speed wind turbine with a Permanent Magnet Synchronous Generator", 2009 IEEE International Symposium on Industrial Electronics, pp. 734–739, Seoul, South Korea, 2009. doi: 10.1109/ISIE.2009.5218120. | |
dc.relation.referencesen | [2] W. Qiao, L. Qu and R. G. Harley, "Control of IPM Synchronous Generator for Maximum Wind Power Generation Considering Magnetic Saturation", in IEEE Transactions on Industry Applications, vol. 45, no. 3, pp. 1095–1105, May-june 2009. doi: 10.1109/TIA.2009.2018914. | |
dc.relation.referencesen | [3] V. V. Grebenikov and R. V. Gamaliia, "Comparative Analysis of Two Types of Generators with Permanent Magnets for Wind Turbine", 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 126–129, Kremenchuk, Ukraine, 2019. doi: 10.1109/MEES.2019.8896375. | |
dc.relation.referencesen | [4] L. I. Mazurenko, O. V. Dzhura, M. V. Kramar, and M. O. Shykhnenko, "Wind energy conversion system with induction generators connected to a single static compensator", 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 258–261, Kremenchuk, Ukraine, 2019. doi: 10.1109/ MEES.2019.8896405 | |
dc.relation.referencesen | [5] A. Hemeida, W. A. Farag, and O. A. Mahgoub, "Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines", World Academy of Science, Engineering and Technology, pp. 1269–1275, At Venice, Italy, 2011. | |
dc.relation.referencesen | [6] Huang, Nantao, "Simulation of Power Control of a Wind Turbine Permanent Magnet Synchronous Generator System", http://epublications.marquette.edu/theses_open/215, 2013. | |
dc.relation.referencesen | [7] L. I. Mazurenko and O. V. Dzhura, "The mathematical model of a stand-alone power generating complex containing two asynchronous generators and a single semiconductor converter for excitation", Pratsi Instytutu electrodynamiky Natsionalnoi akademii nauk Ukrainy, no. 44, pp. 69–78, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016. (Ukrainian) | |
dc.relation.referencesen | [8] L.I. Mazurenko and O. V. Dzhura, "Mathematical model and control algorithm of an unregulated wind turbine and IEIG-based isolated energy system", Electromechanical and energy saving systems, no. 3/2018(43), pp. 24–30, Kremenchuk, Ukraine: Kremenchuk National University, 2018. doi: 10.30929/2072-2052.2018.3.43.24-30. (Ukrainian | |
dc.citation.issue | 2 | |
dc.citation.spage | 13 | |
dc.citation.epage | 20 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Computational Problems Of Electrical Engineering. – 2020 – Vol. 10, No. 2
|