Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56262
Title: Encryption of Text Messages Using Multilayer Neural Networks
Other Titles: Шифрування текстових повідомлень з допомогою багатошарових нейронних мереж
Authors: Бригілевич, Володимир
Пелипець, Назар
Рабик, Василь
Brygilevych, Volodymyr
Pelypets, Nazar
Rabyk, Vasyl
Affiliation: Ivan Franko National University of Lviv
The State Higher School of Technology and Economicsin in Jarosław
Bibliographic description (Ukraine): Brygilevych V. Encryption of Text Messages Using Multilayer Neural Networks / Volodymyr Brygilevych, Nazar Pelypets, Vasyl Rabyk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 2. — P. 1–6.
Bibliographic description (International): Brygilevych V. Encryption of Text Messages Using Multilayer Neural Networks / Volodymyr Brygilevych, Nazar Pelypets, Vasyl Rabyk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 2. — P. 1–6.
Is part of: Computational Problems of Electrical Engineering, 2 (10), 2020
Issue: 2
Issue Date: 24-Feb-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: encryption
decryption
multilayer neural networks
training algorithms
NeuralNet program
Number of pages: 6
Page range: 1-6
Start page: 1
End page: 6
Abstract: Розглянуто алгоритм шифрування/ дешифрування текстових повідомлень з використанням MLNN, який складається з трьох кроків: навчання нейронної мережі на основі навчаючих пар, сформованих з базового набору символів, що зустрічаються в тексті; шифрування повідомлення з використанням ваг прихованих шарів; його дешифрування з використанням ваг вихідного шару. Сформовано необхідні умови для успішного шифрування/ дешифрування цим алгоритмом, підкреслено його обмеження. Описано архітектуру і алгоритм навчання MLNN. Приведено експериментальні дослідження з допомогою програми NeuralNet: навчання MLNN методами BP(Sequential), BP(Batch), Rprop, QuickProp; приклад шифрування/ дешифрування текстового повідомлення.
The article considers an algorithm for encrypting / decrypting text messages using multilayer neural networks (MLNN). The algorithm involves three steps: training a neural network based on the training pairs formed from a basic set of characters found in the text; encryption of the message using the weight coefficients of the hidden layers; its decryption using the weight coefficients of the output layer. The conditions necessary for successful encryption / decryption with this algorithm are formed, its limitations are emphasized. The MLNN architecture and training algorithm are described. The results of experimental research done by using the NeuralNet program are given: training the MLNN employing the BP (Sequential), BP (Batch), Rprop, QuickProp methods; an example of encrypting / decrypting a text message.
URI: https://ena.lpnu.ua/handle/ntb/56262
Copyright owner: © Національний університет “Львівська політехніка”, 2020
URL for reference material: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6A4F81B00868291D27499A6AADC6C330?doi=10.1.1.52.4576
References (Ukraine): [1] B. Schneier, Applied cryptography: Protocols, Algorithms, Source Code in C, Triumf, p. 815, 2012.
[2] E. Volna, M. Kotyrba, V. Kocian, and M. Janosek, “Cryptography Based On Neural Network” // in Proc. 26th European Conference on Modeling and Simulation, pp. 386–391, 2012.
[3] V. Sagar and K. Kumar, “A Symmetric Key Cryptographic Algorithm Using Counter Propagation Network (CPN)”, in Proc. 2014 ACM International Conference on Information and Communication Technology for Competitive Strategies, vol. ISBN, no. 978-1-4503-3216-3, 2014.
[4] K. Shihab, “A backpropagation neural network for computer network security”, Journal of Computer Science, vol. 2, no. 9, pp. 710–715, 2006.
[5] Choi-Kuen Chan, Chi-Kwong Chan, L. P. Lee, L. M. Cheng, Encryption system based on neural network, Communications and Multimedia Security Issues of the New Century, Springer, pp. 117–122, 2001.
[6] M. Arvandi, S. Wu, A. Sadeghian, W. W. Melek, and I. Woungang, “Symmetric cipher design using recurrent neural networks”, in Proc. IEEE International Joint Conference on Neural Networks, pp. 2039–2046, 2006.
[7] V. Bihday, V. Brygilevych, Y. Hychka, N. Pelypets, V. Rabyk, “Recognition of Handwritten Images Using Multilayer Neural Networks IEEE 2019”, in Proc. 11th International Scientific and Practical Conference on Electronics and Information Technologies, ELIT 2019 – Proceedings.
[8] Simon Haykin, Neural Networks: A Comprehensive Foundation 2nd edition, Prentice Hall, NJ, USA ©1998, 842p, ISBN:0132733501.
[9] M. Riedmiller and H. Brawn, RPROP – a fast adaptive learning algorithms. Technacal Report // Karlsruhe: University Karlsruhe. 1992. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6A4F81B00868291D27499A6AADC6C330?doi=10.1.1.52.4576 &rep=rep1&type=pdf
[10] S. E. Fahlman, “Faster Learning Variations on Backpropagation: An Empirical Study”, in Proc. 1988 Connectionist Models Summer School, pp. 38–51, 1988
References (International): [1] B. Schneier, Applied cryptography: Protocols, Algorithms, Source Code in C, Triumf, p. 815, 2012.
[2] E. Volna, M. Kotyrba, V. Kocian, and M. Janosek, "Cryptography Based On Neural Network", in Proc. 26th European Conference on Modeling and Simulation, pp. 386–391, 2012.
[3] V. Sagar and K. Kumar, "A Symmetric Key Cryptographic Algorithm Using Counter Propagation Network (CPN)", in Proc. 2014 ACM International Conference on Information and Communication Technology for Competitive Strategies, vol. ISBN, no. 978-1-4503-3216-3, 2014.
[4] K. Shihab, "A backpropagation neural network for computer network security", Journal of Computer Science, vol. 2, no. 9, pp. 710–715, 2006.
[5] Choi-Kuen Chan, Chi-Kwong Chan, L. P. Lee, L. M. Cheng, Encryption system based on neural network, Communications and Multimedia Security Issues of the New Century, Springer, pp. 117–122, 2001.
[6] M. Arvandi, S. Wu, A. Sadeghian, W. W. Melek, and I. Woungang, "Symmetric cipher design using recurrent neural networks", in Proc. IEEE International Joint Conference on Neural Networks, pp. 2039–2046, 2006.
[7] V. Bihday, V. Brygilevych, Y. Hychka, N. Pelypets, V. Rabyk, "Recognition of Handwritten Images Using Multilayer Neural Networks IEEE 2019", in Proc. 11th International Scientific and Practical Conference on Electronics and Information Technologies, ELIT 2019 – Proceedings.
[8] Simon Haykin, Neural Networks: A Comprehensive Foundation 2nd edition, Prentice Hall, NJ, USA ©1998, 842p, ISBN:0132733501.
[9] M. Riedmiller and H. Brawn, RPROP – a fast adaptive learning algorithms. Technacal Report, Karlsruhe: University Karlsruhe. 1992. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6A4F81B00868291D27499A6AADC6C330?doi=10.1.1.52.4576 &rep=rep1&type=pdf
[10] S. E. Fahlman, "Faster Learning Variations on Backpropagation: An Empirical Study", in Proc. 1988 Connectionist Models Summer School, pp. 38–51, 1988
Content type: Article
Appears in Collections:Computational Problems Of Electrical Engineering. – 2020 – Vol. 10, No. 2

Files in This Item:
File Description SizeFormat 
2020v10n2_Brygilevych_V-Encryption_of_Text_Messages_1-6.pdf1.29 MBAdobe PDFView/Open
2020v10n2_Brygilevych_V-Encryption_of_Text_Messages_1-6__COVER.png534.24 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.