https://oldena.lpnu.ua/handle/ntb/56114
Title: | Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review |
Other Titles: | Кавітація та її комбінації з іншими передовими процесами окислення для очищення стічних вод від фенолу: огляд |
Authors: | Sukhatskiy, Yurii Viktorovych Сухацький, Юрій Вікторович Znak, Zenovii Orestovych Знак, Зеновій Орестович Zin, Olha Ivanivna Зінь, Ольга Іванівна |
Affiliation: | Національний університет "Львівська політехніка" |
Bibliographic description (Ukraine): | Sukhatskiy Yu. V. Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review / Yu. V. Sukhatskiy, Z. O. Znak, O. I. Zin // Voprosy Khimii i Khimicheskoi Tekhnologii. – 2020. – No. 4 (131). – P. 16–30. – Bibliography: 68 titles. |
Bibliographic description (International): | Sukhatskiy Yu.V. Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review / Yu.V. Sukhatskiy, Z.O. Znak, O.I. Zin // Voprosy Khimii i Khimicheskoi Tekhnologii. – 2020. – No. 4 (131). – P. 16-30. |
Journal/Collection: | Voprosy Khimii i Khimicheskoi Tekhnologii |
Issue Date: | 2020 |
Publisher: | ДВНЗ "Український державний хіміко-технологічний університет" |
Country (code): | UA |
Place of the edition/event: | Дніпро |
DOI: | 10.32434/0321-4095-2020-131-4-16-30 |
UDC: | 620.193.16:628.316.12:547.562.1 |
Keywords: | cavitation кавітація phenol фенол hydroxyl radicals гідроксильні радикали ultrasound ультразвук Fenton process процес Фентона photolysis фотоліз photocatalysis фотокаталіз |
Page range: | 16-30 |
Abstract: | The review provides a systematic understanding of the mechanism of the sonochemical degradation of phenol. It was shown that the main contribution to the sonochemical degradation of phenol, a hydrophilic non-volatile wastewater component, is related to hydroxylation on the boundary of the «cavitation bubble–water contaminant solution». Depending on the method of generating hydroxyl radicals, all wastewater treatment methods for phenol removal based on advanced oxidation processes are classified into the following categories: chemical (acoustic and hydrodynamic cavitation, use of oxidants, Fenton process, and Fenton-like processes), photochemical (photolysis and photocatalysis), electrochemical and combined techniques. The essence of these methods is revealed and their main advantages and disadvantages are reviewed. It is shown that the efficiency of combined methods of phenol degradation that are based on the use of cavitation (acoustic or hydrodynamic) depends on the power of ultrasonic emitters, the frequency of ultrasonic vibrations, the magnitude of the pressure at the inlet of the hydrodynamic cavitator, physicochemical properties of media (temperature and pH), initial phenol concentration in aqueous medium, the design features of the cavitation generators, the presence of water-soluble gases or solid particles that exhibit catalytic properties, and the consumption of oxidizing reagents. Literature data showed that the most cost-effective method involving
the use of ultrasonic cavitation is a combination «ultrasonic cavitation+photolysis+ozonation». The choice of a particular method for the degradation of phenol is determined by its content in wastewaters and their volume, the required degree of degradation, the duration of the purification process (the rate of degradation of the phenol), and economic indicators. В огляді систематизовано теоретичні уявлення про механізм сонохімічної деградації фенолу. Зазначено, що основний внесок у сонохімічну деградацію фенолу, як гідрофільного нелеткого компонента стічних вод, належить гідроксилюванню на межі "кавітаційна бульбашка-водний розчин забруднювача". Залежно від способу генерування гідроксильних радикалів всі методи очищення стічних вод від фенолу, засновані на передових процесах окислення, класифіковано на хімічні (акустична та гідродинамічна кавітація, використання реаґентів-окисників, процес Фентона та Фентон-подібні процеси), фотохімічні (фотоліз, фотокаталіз), електрохімічні та комбіновані. Розкрито сутність цих методів, описано їх основні переваги та недоліки. Показано, що ефективність комбінованих методів деградації фенолу, що базуються на використанні кавітації (акустичної або гідродинамічної), залежить від потужності ультразвукових випромінювачів, частоти ультразвуку, величини тиску на вході у гідродинамічний кавітатор, фізико-хімічних властивостей середовищ (температури, pH), початкової концентрації фенолу у водному середовищі, конструктивних особливостей генераторів кавітації, наявності розчинених у воді газів або твердих частинок, які виявляють каталітичні властивості, витрати реаґентів-окисників. На основі порівняльного оцінювання витрат на очищення феноловмісних стічних вод виявлено, що найбільш економічно вигідним методом, який базується на використанні ультразвукової кавітації, є комбінація "ультразвукова кавітація+фотоліз+озонування". Встановлено, що застосування того чи іншого методу для деградації фенолу буде зумовлено його вмістом у стоках, об'ємом стоків, необхідним ступенем деградації, тривалістю процесу очищення, що визначається швидкістю деградації фенолу, та економічними показниками. |
Sponsorship: | The work was supported by the Ministry of Education and Science of Ukraine within the framework of the joint Ukrainian-Indian research project «Hydrodynamic cavitation based intensified and low cost technology for industrial wastewater treatment containing toxic organic compounds and solid particles». |
URI: | https://ena.lpnu.ua/handle/ntb/56114 |
ISSN: | 0321-4095 |
Copyright owner: | © Yu.V. Sukhatskiy, Z.O. Znak, O.I. Zin |
References (Ukraine): | 1. Kidak R., Ince N.H. Effects of operating parameters on sonochemical decomposition of phenol // J. Hazard. Mater. – 2006. – Vol. 137. – No. 3. – P. 1453-1457. 2. Effect of coal ash on sonochemical degradation of phenol in water / Nakui H., Okitsu K., Maeda Y., Nishimura R. // Ultrason. Sonochem. – 2007. – Vol. 14. – No. 2. – P. 191-196. 3. Kidak R., Ince N.H. Ultrasonic destruction of phenol and substituted phenols: a review of current research // Ultrason. Sonochem. – 2006. – Vol. 13. – No. 3. – P. 195-199. 4. Ultrasound-assisted adsorption of phenol from aqueous solution by using spent black tea leaves / Ali A., Bilal M., Khan R., Farooq R., Siddique M. // Environ. Sci. Pollut. Res. – 2018. – Vol. 25. – No. 23. – P. 22920-22930. 5. Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals / Chand R., Ince N.H., Gogate P.R., Bremner D.H. // Sep. Purif. Technol. – 2009. – Vol. 67. – No. 1. – P. 103-109. 6. TiO2/nanoclay nanocomposite for phenol degradation in sonophotocatalytic reactor / Ghodke S., Sonawane S., Gaikawad R., Mohite K.C. // Can. J. Chem. Eng. – 2012. – Vol. 90. – No. 5. – P. 1153-1159. 7. Singh V.R., Bagal M.V., Mota R.P. Phenolic wastewater treatment: a review. International Journal of Advance Engineering and Research Development, 2018, vol. 5, no. 5, article no. 15994. 8. Karamah E.F., Tjahjadi L., Bismo S., Purwanto W.W., Degradation of phenol by combination of ozonation and cavitation. Proceeding of the 12th International conference on QiR (Quality in Research). Indonesia, Bali, 2011, pp. 119-126. 9. Bapat P.S., Gogate P.R., Pandit A.B. Theoretical analysis of sonochemical degradation of phenol and its chloro-derivatives. Ultrasonics Sonochemistry, 2008, vol. 15, pp. 564-570. 10. Bi Y.-G., Zheng Y.-H., Zhou S.-Q., Study on the process of degradation of phenolic compounds water by slot ultrasonic. E3S Web of Conferences: 4th International conference on advances in energy and environment research (ICAEER), 2019, vol. 118, article no. 03050. 11. Saksono N., Seratri R.T., Muthia R., Bismo S. Phenol degradation in wastewater with a contact glow discharge electrolysis reactor using a sodium sulfate. International Journal of Technology, 2015, vol. 6, no. 7, pp. 1153-1163. 12. Klymenko I., Yelatontsev D., Ivanchenko A., Dupenko O., Voloshyn M. Developing of effective treatment technology of the phenolic wastewater. Eastern-European Journal of Enterprise Technologies, 2016, vol. 3, no. 10(81), pp. 29-34. 13. Gogate P.R. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrasonics Sonochemistry, 2008, vol. 15, pp. 1-15. 14. Kidak R., Ince N.H. Catalysis of advanced oxidation reactions by ultrasound: a case study with phenol. Journal of Hazardous Materials, 2007, vol. 146, pp. 630-635. 15. Lu Y., Liu Y., Xia B., Zuo W. Phenol oxidation by combined cavitation water jet and hydrogen peroxide. Chinese Journal of Chemical Engineering, 2012, vol. 20, pp. 760-767. 16. Mahamuni N.N., Pandit A.B. Effect of additives on ultrasonic degradation of phenol. Ultrasonics Sonochemistry, 2006, vol. 13, pp. 165-174. 17. Sivasankar T., Moholkar V.S. Mechanistic features of the sonochemical degradation of organic pollutants. AIChE Journal, 2008, vol. 54, pp. 2206-2219. 18. Sivasankar T., Moholkar V.S. Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics. Ultrasonics Sonochemistry, 2009, vol. 16, pp. 769-781. 19. Sivasankar T., Moholkar V.S. Mechanistic approach to intensification of sonochemical degradation of phenol. Chemical Engineering Journal, 2009, vol. 149, pp. 57-69. 20. Chiha M., Merouani S., Hamdaoui O., Baup S., Gondrexon N., Petrier C. Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics. Ultrasonics Sonochemistry, 2010, vol. 17, pp. 773-782. 21. Serpone N., Terzian R., Colarusso P., Minero C., Pelizzetti E., Hidaka H. Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Research on Chemical Intermediates, 1993, vol. 18, pp. 183-202. 22. Petrier C., Francony A. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonics Sonochemistry, 1997, vol. 4, pp. 295-300. 23. Lesko T., Colussi A.J., Hoffmann M.R. Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology, 2006, vol. 40, pp. 6818-6823. 24. Okouchi S., Nojima O., Arai T. Cavitation-induced degradation of phenol by ultrasound. Water Science and Technology, 1992, vol. 26, pp. 2053-2056. 25. Petrier C., Francony A. Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment. Water Science and Technology, 1997, vol. 35, pp. 175-180. 26. Znak Z.O., Sukhatskiy Yu.V., Mnykh R.V., Tkach Z.S. Termokhimichnyi analiz energetyky protsessu sonolizu vody u kavitatsiinykh polyakh [Thermochemical analysis of energetic in the process of water sonolysis in cavitation fields]. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, no. 3, pp. 64-69. (in Ukrainian). 27. Merouani S., Hamdaoui O., Rezgui Y., Guemini M. Mechanism of the sonochemical production of hydrogen. International Journal of Hydrogen Energy, 2015, vol. 40, pp. 4056- 4064. 28. Znak Z.O., Sukhatskiy Yu.V., Zin O.I., Khomyak S.V., Mnykh R.V., Lysenko A.V. Rozklad benzolu v kavitatsiinykh polyakh [The decomposition of the benzene in cavitation fields]. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, no. 1, pp. 72-77. (in Ukrainian). 29. Znak Z.O., Sukhatskiy Yu.V., Zin O.I., Vyrsta K.R. Intensyfikatsiya kavitatsiinogo rozkladu benzenu [The intensification of the cavitation decomposition of benzene]. Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, no. 4, pp. 55-61. (in Ukrainian). 30. Gogate P.R., Pandit A.B. Sonophotocatalytic reactors for wastewater treatment: a critical review. AIChE Journal, 2004, vol. 50, pp. 1051-1079. 31. Kim K., Cho E., Thokchom B., Cui M., Jang M., Khim J. Synergistic sonoelectrochemical removal of substituted phenols: implications of ultrasonic parameters and physicochemical properties. Ultrasonics Sonochemistry, 2015, vol. 24, pp. 172-177. 32. Timofeyeva S.S., Batoyeva A.A. Stochnye vody predpriyatii po dobyche i pererabotke rudnogo zolota i kombinirovannye tekhnologii ikh obezvrezhivaniya [Wastewater of enterprises for the extraction and processing of ore gold and combined technologies for their disposal]. Vestnik IrGTU, 2013, no. 11 (82), pp. 132-142. (in Russian). 33. Deng J. Study of porous plate hydrodynamic cavitation device for p-nitrophenol. Advanced Materials Research, 2014, vol. 1015, pp. 385-388. 34. Marwan M. Kinetics of phenol degradation in aqueous solution oxidized under low frequency ultrasonic irradiation. Jurnal Rekayasa Kimia & Lingkungan, 2014, vol. 10, no. 1, pp. 34-39. 35. Her N.-G., Park J.-S., Oh J., Yoon Y. New design approaches for ultrasonic reactors: degradation of naphthalene and phenol in water. Water, Air, & Soil Pollution, 2011, vol. 220, pp. 173-180. 36. Lu G., Zhao L., Zhu M., Deng C., Liu H., Ma J., Li Y. Effect of cavitation hydrodynamic parameters on bisphenol A removal. Environmental Engineering Science, 2019, vol. 36, no. 8, pp. 873-882. 37. Wu C.D., Zhang Z.L., Wu Y., Wang L., Chen L.J. Effects of operating parameters and additives on degradation of phenol in water by the combination of H2O2 and hydrodynamic cavitation. Desalination and Water Treatment, 2015, vol. 53, pp. 462-468. 38. Znak Z., Sukhatskiy Yu. The Brandon method in modelling the cavitation processing of aqueous media. EasternEuropean Journal of Enterprise Technologies, 2016, vol. 3, no. 8 (81), pp. 37-42. 39. Yavors’kyi V.T., Znak Z.O., Sukhats’kyi Yu.V., Mnykh R.V. Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Materials Science, 2017, vol. 52, pp. 595-600. 40. Yavorskiy V., Sukhatskiy Y., Znak Z., Mnykh R. Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chemistry & Chemical Technology, 2016, vol. 10, pp. 507-513. 41. Gogate P.R., Pandit A.B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 2004, vol. 8, pp. 501-551. 42. Sivasankar T., Moholkar V.S. Physical insight into the sonochemical degradation of 2,4-dichlorophenol. Environmental Technology, 2010, vol. 31, pp. 1483-1494. 43. Drijvers D., van Langenhove H., Beckers M. Decomposition of phenol and trichloroethylene by the ultrasound/ H2O2/CuO process. Water Research, 1999, vol. 33, pp. 1187-1194. 44. Wu J., Jia R., Liu C., Wang H. Study of degradation of phenol in waste water sample via advanced oxidation technology. Proceedings of the 2015 International Forum on Energy, Environment Science and Materials (IFEESM 2015). 2015, pp. 584-587. 45. Gagol M., Przyjazny A., Boczkaj G. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions. Ultrasonics Sonochemistry, 2018, vol. 45, pp. 257-266. 46. Lu X., Zhao J., Wang Q., Wang D., Xu H., Ma J., Qiu W., Hu T. Sonolytic degradation of bisphenol S: effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity. Water Research, 2019, vol. 165, article no. 114969. 47. Gagol M., Przyjazny A., Boczkaj G. Wastewater treatment by means of advanced oxidation processes based on cavitation – a review. Chemical Engineering Journal, 2018, vol. 338, pp. 599-627. 48. Chakma S., Moholkar V.S. Intensification of wastewater treatment using sono-hybrid processes: an overview of mechanistic synergism. Indian Chemical Engineer, 2015, vol. 57, pp. 359-381. 49. ElShafei G.M.S., Yehia F.Z., Eshaq Gh., ElMetwally A.E. Enhanced degradation of nonylphenol at neutral pH by ultrasonic assisted-heterogeneous Fenton using nano zero valent metals. Separation and Purification Technology, 2017, vol. 178, pp. 122-129. 50. Li X., Zhang Y., Xie Y., Zeng Y., Li P., Xie T., Wang Y. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized schwertmannite catalyst. Journal of Hazardous Materials, 2018, vol. 344, pp. 689-697. 51. Molina R., Martinez F., Melero J.A., Bremner D.H., Chakinala A.G. Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Applied Catalysis B: Environmental, 2006, vol. 66, pp. 198-207. 52. Segura Y., Molina R., Martinez F., Melero J.A. Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrasonics Sonochemistry, 2009, vol. 16, pp. 417-424. 53. Zhou T., Lim T.T., Lu X., Li Y., Wong F.S. Simultaneous degradation of 4CP and EDTA in a heterogeneous ultrasound/Fenton like system at ambient circumstance. Separation and Purification Technology, 2009, vol. 68, pp. 367-374. 54. Lim M., Son Y., Khim J. The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A. Ultrasonics Sonochemistry, 2014, vol. 21, pp. 1976-1981. 55. Dutilleul H., Partaloglu A., da Costa P., Galvez M.E. Shock-induced cavitation as a way of accelerating phenol oxidation in aqueous media. Chemical Engineering and Processing: Process Intensification, 2017, vol. 112, pp. 47-55. 56. Thanekar P., Gogate P. Application of hydrodynamic cavitation reactors for treatment of wastewater containing organic pollutants: intensification using hybrid approaches. Fluids, 2018, vol. 3, article no. 98. 57. Tijani J.O., Fatoba O.O., Madzivire G., Petrik L.F. A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water, Air, & Soil Pollution, 2014, vol. 225, article no. 2102. 58. Wu Z., Franke M., Ondruschka B., Zhang Y., Ren Y., Braeutigam P., Wang W. Enhanced effect of suction-cavitation on the ozonation of phenol. Journal of Hazardous Materials, 2011, vol. 190, pp. 375-380. 59. Chakinala A.G., Bremner D.H., Gogate P.R., Namkung K.C., Burgess A.E. Multivariate analysis of phenol mineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing. Applied Catalysis B: Environmental, 2008, vol. 78, pp. 11-18. 60. Aseev D.G., Sizykh M.R., Batoeva A.A. Oxidative degradation of phenols in sono-Fenton-like systems upon highfrequency ultrasound irradiation. Russian Journal of Physical Chemistry A, 2017, vol. 91, pp. 2331-2336. 61. Khokhawala I.M., Gogate P.R. Degradation of phenol using a combination of ultrasonic and UV irradiations at pilot scale operation. Ultrasonics Sonochemistry, 2010, vol. 17, pp. 833-838. 62. Joseph C.G., Puma G.L., Bono A., Krishnaiah D. Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 2009, vol. 16, pp. 583-589. 63. Mahvi A.H. Application of ultrasonic technology for water and wastewater treatment. Iranian Journal of Public Health, 2009, vol. 38, no. 2, pp. 1-17. 64. Mahamuni N.N., Adewuyi Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 2010, vol. 17, pp. 990-1003. 65. Papoutsakis S., Miralles-Cuevas S., Gondrexon N., Baup S., Malato S., Pulgarin C. Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach. Ultrasonics Sonochemistry, 2015, vol. 22, pp. 527-534. 66. Chen Y.C., Smirniotis P. Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Industrial & Engineering Chemistry Research, 2002, vol. 41, pp. 5958-5965. 67. Trabelsi F., Ait-Lyazidi H., Ratsimba B., Wilhelm A.M., Delmas H., Fabre P.L., Berlan J. Oxidation of phenol in wastewater by sonoelectrochemistry. Chemical Engineering Science, 1996, vol. 51, pp. 1857-1865. 68. Entezari M.H., Petrier C. A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture. Ultrasonics Sonochemistry, 2005, vol. 12, pp. 283-288. |
Content type: | Article |
Appears in Collections: | Статті та тези |
File | Description | Size | Format | |
---|---|---|---|---|
Sukhatskiy.pdf | Стаття | 287.92 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.