Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56087
Full metadata record
DC FieldValueLanguage
dc.contributor.authorМельник, Ю. Я.
dc.contributor.authorКос, П. О.
dc.contributor.authorСуберляк, О. В.
dc.contributor.authorMelnyk, Yu.
dc.contributor.authorKos, P.
dc.contributor.authorSuberlyak, O.
dc.date.accessioned2021-01-28T11:24:15Z-
dc.date.available2021-01-28T11:24:15Z-
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.identifier.citationМельник Ю. Я. Дослідження кінетики прищепленої полімеризації у тонкому шарі 2-гідроксіетилметакрилату з полівінілпіролідоном / Ю. Я. Мельник, П. О. Кос, О. В. Суберляк // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 209–213.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56087-
dc.description.abstractДосліджено кінетику полімеризації 2-гідроксіетилметакрилату з полівінілпіролідоном у тонкому шарі. Побудовано екзотерми реакції (ко)полімеризації в масі. Визначено порядок реакції за ініціатором, мономером і полімером та виведено математичну залежність сумарної швидкості прищепленої кополімеризації ГЕМА до ПВП. Визначено залежність кількості ПВП, що бере участь у реакції прищепленої полімеризації від його концентрації в композиції, природи та концентрації ініціатора і температури процесу.
dc.description.abstractThe kinetics of polymerization of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone in a thin layer were studied. The dependences of the conversion for polymerization HEMA with PVP in mass and in solvent were determined. (Co)polymerization exotherms for the reaction in mass were calculated. The reaction order by initiator, monomer and polymer was determined and the mathematical dependence of the total rate of grafted copolymerization of HEMA to PVP was calculated. Amount of the reacted PVP in the graft polymerization reaction in dependence on concentration, nature and concentration of the initiator in the composition and temperature was determined.
dc.format.extent209-213
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.relation.urihttps://doi.org/10.1016/S0142-9612(01)00035-7
dc.relation.urihttps://doi.org/10.23939/ctas2019.01.121
dc.relation.urihttps://doi.org/10.1021/ac60081a031
dc.relation.urihttps://doi.org/10.1002/apmc.1983.051180101
dc.subject2-гідроксіетилметакрилат
dc.subjectполівінілпіролідон
dc.subjectполімеризація
dc.subjectтонкий шар
dc.subjectкінетика
dc.subjectприщеплений кополімер
dc.subject2-hydroxyethyl methacrylate
dc.subjectpolyvinylpyrrolidone
dc.subjectpolymerization
dc.subjectkinetics
dc.subjectthin layer
dc.subjectgraft copolymer
dc.titleДослідження кінетики прищепленої полімеризації у тонкому шарі 2-гідроксіетилметакрилату з полівінілпіролідоном
dc.title.alternativeInvestigation of the kinetics of graft polymerization in a thin layer of 2-hydroxiethyl methacrylate with polyvinylpyrrolidone
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages5
dc.identifier.citationenMelnyk Yu. Investigation of the kinetics of graft polymerization in a thin layer of 2-hydroxiethyl methacrylate with polyvinylpyrrolidone / Yu. Melnyk, P. Kos, O. Suberlyak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 209–213.
dc.identifier.doidoi.org/10.23939/ctas2020.01.209
dc.relation.references1. Lavrov, N. A., &Kryzhanovskaya, T. S. (1995). Poliakrilaty v meditsine. Plasticheskiye massy, 2, 42–43.
dc.relation.references2. Lavrov, N. A.,& Nikolayev, A. F. (1986). Oblasti primeneniya polimerov na osnove 2-gidroksietilmetakrilata. Plasticheskiye massy, 8, 55–57.
dc.relation.references3. García-Millán, E., Koprivnik, S., &Otero-Espinar, F. J. (2015). Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. International Journal of Pharmaceutics, 487(1-2), 260-269. doi: 10.1016/j.ijpharm.2015.04.037
dc.relation.references4. Hoch, G., Chauhan, A., & Radke, C. J. (2003). Permeability and diffusivity for water transport through hydrogel membranes. Journal of Membrane Science, 214(2), 199–209. doi: 10.1016/S0376-7388(02)00546-X
dc.relation.references5. Dziubla, T. D., Torjman, M. C., Joseph, J. I., Murphy- Tatum, M., & Lowman, A. M. (2001). Evaluation of porous networks of poly(2-hydroxyethyl methacrylate) as interfacial drug delivery devices. Biomaterials, 22(21), 2893–2899. https://doi.org/10.1016/S0142-9612(01)00035-7
dc.relation.references6. Saini, R. K., Bagri, L. P., & Bajpai, A. K. (2014). Poly(2-hydroxyethyl methacrylate) (PHEMA) based nanoparticles for drug delivery applications: A review. Nano Science and Nano Technology: An Indian Journal, 8(11), 416–427.
dc.relation.references7. Skorokhoda, V., Melnyk, Y., Semenyuk, N, & Suberlyak, O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry& Chemical Technology, 9(1), 55–59.
dc.relation.references8. Skorokhoda, V. Y., Melnyk, Yu. Ya., Shalata, V. Ya., Skorokhoda, T. V., & Suberliak, S. A. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies.1, 6(85), 50-55. doi: 10.15587/1729-4061.2017.92368
dc.relation.references9. Skorokhoda, V., Melnyk, Y., Semenyuk, N., Ortynska, N., & Suberlyak, O. (2017). Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chemistry & Chemical Technolog, 11(2), 171–174. doi: 10.15587/1729-4061.2017.92368
dc.relation.references10. Skorokhoda, V. Y., Semenyuk, N. B., Dzyaman, I. Z., Levyts’ka, KH. V., &Dudok H. D. (2018). Vplyv pryrody kal’tsiyevmisnoho napovnyuvacha na zakonomirnosti oderzhannya ta vlastyvosti osteoplastychnykh porystykh kompozytiv. Pytannya khimiyi i khimichnoyi tekhnolohiyi, 2(117), 101–108.
dc.relation.references11. Skorokhoda, V. Y., Dudok, H. D., Dzyaman, I. Z., &Kysil’, KH. V. (2019). Intensyfikatsiya protsesu oderzhannya osteoplastychnykh porystykh kompozytiv z vykorystannyam ul’trazvuku. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 2(1), 121–126. doi: https://doi.org/10.23939/ctas2019.01.121
dc.relation.references12. Levy, G. B., Fergus, D. (1953). Microdetermination of polyvinylpyrrolidone in aqueous solution and in body fluids. Аnа1ytical Chemistry, 25(9), 1408–1410. https://doi.org/10.1021/ac60081a031
dc.relation.references13. Baghdasaryan, X. S. (1966). The theory of radical polymerization. Moscow: Science.
dc.relation.references14. Berlin, A. A., Vol’fson, S. A., & Yenikopyan, N. S. (1978). Kinetika polimerizatsionnykh protsessov. Moskva: Khimiya.
dc.relation.references15. Staszewska, D. U. (1983). The oxidation of poly- (vinyl pyrrolidone) with Ce(IV). MacromolecularMaterials and Engineering, 118(1), 1-17. doi:https://doi.org/10.1002/apmc.1983.051180101
dc.relation.references16. Suberlyak, O. V., Skorokhoda,V. I., &Tir, I. G. (1989). Vliyaniye kompleksoobrazovaniya na polimerizatsiyu 2-oksietilenmetakrilata v prisutstvii polivinilpirrolidona. Vysokomolekulyarnyye soyedineniya, 31(5B), 336–340.
dc.relation.referencesen1. Lavrov, N. A., &Kryzhanovskaya, T. S. (1995). Poliakrilaty v meditsine. Plasticheskiye massy, 2, 42–43.
dc.relation.referencesen2. Lavrov, N. A.,& Nikolayev, A. F. (1986). Oblasti primeneniya polimerov na osnove 2-gidroksietilmetakrilata. Plasticheskiye massy, 8, 55–57.
dc.relation.referencesen3. García-Millán, E., Koprivnik, S., &Otero-Espinar, F. J. (2015). Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. International Journal of Pharmaceutics, 487(1-2), 260-269. doi: 10.1016/j.ijpharm.2015.04.037
dc.relation.referencesen4. Hoch, G., Chauhan, A., & Radke, C. J. (2003). Permeability and diffusivity for water transport through hydrogel membranes. Journal of Membrane Science, 214(2), 199–209. doi: 10.1016/S0376-7388(02)00546-X
dc.relation.referencesen5. Dziubla, T. D., Torjman, M. C., Joseph, J. I., Murphy- Tatum, M., & Lowman, A. M. (2001). Evaluation of porous networks of poly(2-hydroxyethyl methacrylate) as interfacial drug delivery devices. Biomaterials, 22(21), 2893–2899. https://doi.org/10.1016/S0142-9612(01)00035-7
dc.relation.referencesen6. Saini, R. K., Bagri, L. P., & Bajpai, A. K. (2014). Poly(2-hydroxyethyl methacrylate) (PHEMA) based nanoparticles for drug delivery applications: A review. Nano Science and Nano Technology: An Indian Journal, 8(11), 416–427.
dc.relation.referencesen7. Skorokhoda, V., Melnyk, Y., Semenyuk, N, & Suberlyak, O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry& Chemical Technology, 9(1), 55–59.
dc.relation.referencesen8. Skorokhoda, V. Y., Melnyk, Yu. Ya., Shalata, V. Ya., Skorokhoda, T. V., & Suberliak, S. A. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies.1, 6(85), 50-55. doi: 10.15587/1729-4061.2017.92368
dc.relation.referencesen9. Skorokhoda, V., Melnyk, Y., Semenyuk, N., Ortynska, N., & Suberlyak, O. (2017). Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chemistry & Chemical Technolog, 11(2), 171–174. doi: 10.15587/1729-4061.2017.92368
dc.relation.referencesen10. Skorokhoda, V. Y., Semenyuk, N. B., Dzyaman, I. Z., Levyts’ka, KH. V., &Dudok H. D. (2018). Vplyv pryrody kal’tsiyevmisnoho napovnyuvacha na zakonomirnosti oderzhannya ta vlastyvosti osteoplastychnykh porystykh kompozytiv. Pytannya khimiyi i khimichnoyi tekhnolohiyi, 2(117), 101–108.
dc.relation.referencesen11. Skorokhoda, V. Y., Dudok, H. D., Dzyaman, I. Z., &Kysil’, KH. V. (2019). Intensyfikatsiya protsesu oderzhannya osteoplastychnykh porystykh kompozytiv z vykorystannyam ul’trazvuku. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 2(1), 121–126. doi: https://doi.org/10.23939/ctas2019.01.121
dc.relation.referencesen12. Levy, G. B., Fergus, D. (1953). Microdetermination of polyvinylpyrrolidone in aqueous solution and in body fluids. Ana1ytical Chemistry, 25(9), 1408–1410. https://doi.org/10.1021/ac60081a031
dc.relation.referencesen13. Baghdasaryan, X. S. (1966). The theory of radical polymerization. Moscow: Science.
dc.relation.referencesen14. Berlin, A. A., Vol’fson, S. A., & Yenikopyan, N. S. (1978). Kinetika polimerizatsionnykh protsessov. Moskva: Khimiya.
dc.relation.referencesen15. Staszewska, D. U. (1983). The oxidation of poly- (vinyl pyrrolidone) with Ce(IV). MacromolecularMaterials and Engineering, 118(1), 1-17. doi:https://doi.org/10.1002/apmc.1983.051180101
dc.relation.referencesen16. Suberlyak, O. V., Skorokhoda,V. I., &Tir, I. G. (1989). Vliyaniye kompleksoobrazovaniya na polimerizatsiyu 2-oksietilenmetakrilata v prisutstvii polivinilpirrolidona. Vysokomolekulyarnyye soyedineniya, 31(5B), 336–340.
dc.citation.issue1
dc.citation.spage209
dc.citation.epage213
dc.coverage.placenameLviv
dc.coverage.placenameLviv
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1

Files in This Item:
File Description SizeFormat 
2020v3n1_Melnyk_Yu-Investigation_of_the_kinetics_209-213.pdf594.03 kBAdobe PDFView/Open
2020v3n1_Melnyk_Yu-Investigation_of_the_kinetics_209-213__COVER.png473.55 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.