Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56080
Title: Кінетика адсорбції фосфатіонів синтетними цеолітами на основі золи виносу ТЕС
Other Titles: Kinetics of adsorption of phosphation by synthetic zeolites from coal fly ash
Authors: Сабадаш, В. В.
Гумницький, Я. М.
Sabadash, V.
Gumnitsky, Ya.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Сабадаш В. В. Кінетика адсорбції фосфатіонів синтетними цеолітами на основі золи виносу ТЕС / В. В. Сабадаш, Я. М. Гумницький // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 169–174.
Bibliographic description (International): Sabadash V. Kinetics of adsorption of phosphation by synthetic zeolites from coal fly ash / V. Sabadash, Ya. Gumnitsky // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 169–174.
Is part of: Chemistry, Technology and Application of Substances, 1 (3), 2020
Issue: 1
Issue Date: 24-Feb-2020
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Lviv
DOI: doi.org/10.23939/ctas2020.01.169
Keywords: фосфати
цеоліт
рівновага
адсорбції
стічні води
zeolite
equilibrium
adsorption
wastewaters
Number of pages: 6
Page range: 169-174
Start page: 169
End page: 174
Abstract: Досліджено сорбційні властивості природного цеоліту щодо фосфату в статичних та динамічних умовах. Синтезовано і модифіковано цеоліт на основі золи виносу Добротвірської ДРЕС. Встановлено рівноважні значення адсорбційної здатності, побудовано відповідні ізотерми за температури 20 °С. Досліджено кінетику адсорбції в умовах механічного перемішування. Встановлено лімітуючи стадії процесу. Розраховано та побудовано епюри швидкостей, потужності та тиску в апараті.
The purpose of this work was to study the process of adsorption of phosphate on natural and synthesized sorbents, such as aluminosilicates. The sorption properties of natural zeolite for phosphate under static and dynamic conditions were investigated. The zeolite on the basis of the coal fly ash of Dobrotvorskaya heat power plant was synthesized and modified. The equilibrium values of adsorption capacity were determined, and the corresponding isotherms were constructed at a temperature of 20 °C. The kinetics of adsorption under mechanical mixing conditions was investigated. The limitation stages of the adsorption process was established. The speed, power and pressure diagrams of the apartheid were calculated and constructed.
URI: https://ena.lpnu.ua/handle/ntb/56080
Copyright owner: © Національний університет “Львівська політехніка”, 2020
References (Ukraine): 1. Lin, S., Man, Y. B., Chow, K. L., Zheng, C., & Wong, M. H. (2020). Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 50(2), 105–134.
2. Deng, H., Wei, R., Luo, W., Hu, L., Li, B., & Shi, H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658.
3. Ramesh, V., & George, J. (2020). Carbon and Nutrient Sequestration Potential of Coal-Based Fly Ash Zeolites. In Circular Economy and Fly Ash Management (pp. 47–55). Springer, Singapore.
4. Coignet, P. A., Kratzer, D. W., Kulkarni, S. S., & Sanders Jr, E. S. (2020). U.S. Patent No. 10,525,400. Washington, DC: U.S. Patent and Trademark Office.
5. Zeng, X., Xu, Y., Zhang, B., Luo, G., Sun, P., Zou, R., & Yao, H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503–512.
6. Akpomie, K. G., Onyeabor, C. F., Ezeofor, C. C., Ani, J. U., & Eze, S. I. (2019). Natural aluminosilicate clay obtained from South-Eastern Nigeria as potential sorbent for oil spill remediation. Journal of African Earth Sciences, 155, 118–123.
7. Zagklis, D. P., & Paraskeva, C. A. (2020). Preliminary design of a phenols purification plant. Journal of Chemical Technology & Biotechnology, 95(2), 373–383.
8. Sabadash, V., Gumnitsky, J., Hyvlyud, A. (2016). Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. Chemistry & Chemical Technology; 10.2: 235–240.
9. Kalvachev, Y., Zgureva, D., Boycheva, S., Barbov, B., & Petrova, N. (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124(1), 101–106.
10. Lazarova, K., Boycheva, S., Vasileva, M., Zgureva, D., Georgieva, B., & Babeva, T. (2019, March). Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. In Journal of Physics: Conference Series (Vol. 1186, No. 1, p. 012024). IOP Publishing.
11. Karanac, M., Đolić, M., Veličković, Z., Kapidžić, A., Ivanovski, V., Mitrić, M., & Marinković, A. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of environmental management, 224, 263–276.
12. Rentsenorov, U., Davaabal, B., & Temuujin, J. (2018). Synthesis of Zeolite A from Mongolian Coal Fly Ash by Hydrothermal Treatment. In Solid State Phenomena (Vol. 271, pp. 1–8). Trans Tech Publications Ltd.
13. Lee, Y. R., Soe, J. T., Zhang, S., Ahn, J. W., Park, M. B., & Ahn, W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821–843.
14. Wulandari, W., Paramitha, T., Rizkiana, J., & Sasongko, D. (2019, June). Characterization of Zeolite A from Coal Fly Ash Via Fusion-Hydrothermal Synthesis Method. In IOP Conference Series: Materials Science and Engineering (Vol. 543, No. 1, p. 012034). IOP Publishing.
15. Galarneau, A., Mehlhorn, D., Guenneau, F., Coasne, B., Villemot, F., Minoux, D., … & Dath, J. P. (2018). Specific surface area determination for microporous/mesoporous materials: the case of mesoporous FAU-Y zeolites. Langmuir, 34(47), 14134–14142.
16. Wang, C., Leng, S., Guo, H., Cao, L., & Huang, J. (2019). Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite. Applied Surface Science, 478, 319–326.
17. Sabadash, V., Mylanyk, O., Matsuska, O., & Gumnitsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 4 (11), 2017, 11(4), 459–462.
18. Demol, R., Vidal, D., Shu, S., Bertrand, F., & Chaouki, J. (2019). Mass transfer in the homogeneous flow regime of a bubble column. Chemical Engineering and Processing-Process Intensification, 144, 107647.
19. Titscher, P., Götz von Olenhusen, A., Arlt, T., Manke, I., & Kwade, A. (2019). Evaluation of a High- Intensive Mixing Process in a Ring Shear Mixer and Its Impact on the Properties of Composite Particles for Lithium–Sulfur Battery Cathodes. Energy Technology, 7(12), 1801059.
20. Nazari, M., Rashidi, S., & Esfahani, J. A. (2019). Mixing process and mass transfer in a novel design of induced-charge electrokinetic micromixer with a conductive mixing-chamber. International Communications in Heat and Mass Transfer, 108, 104293.
References (International): 1. Lin, S., Man, Y. B., Chow, K. L., Zheng, C., & Wong, M. H. (2020). Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 50(2), 105–134.
2. Deng, H., Wei, R., Luo, W., Hu, L., Li, B., & Shi, H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658.
3. Ramesh, V., & George, J. (2020). Carbon and Nutrient Sequestration Potential of Coal-Based Fly Ash Zeolites. In Circular Economy and Fly Ash Management (pp. 47–55). Springer, Singapore.
4. Coignet, P. A., Kratzer, D. W., Kulkarni, S. S., & Sanders Jr, E. S. (2020). U.S. Patent No. 10,525,400. Washington, DC: U.S. Patent and Trademark Office.
5. Zeng, X., Xu, Y., Zhang, B., Luo, G., Sun, P., Zou, R., & Yao, H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503–512.
6. Akpomie, K. G., Onyeabor, C. F., Ezeofor, C. C., Ani, J. U., & Eze, S. I. (2019). Natural aluminosilicate clay obtained from South-Eastern Nigeria as potential sorbent for oil spill remediation. Journal of African Earth Sciences, 155, 118–123.
7. Zagklis, D. P., & Paraskeva, C. A. (2020). Preliminary design of a phenols purification plant. Journal of Chemical Technology & Biotechnology, 95(2), 373–383.
8. Sabadash, V., Gumnitsky, J., Hyvlyud, A. (2016). Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. Chemistry & Chemical Technology; 10.2: 235–240.
9. Kalvachev, Y., Zgureva, D., Boycheva, S., Barbov, B., & Petrova, N. (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124(1), 101–106.
10. Lazarova, K., Boycheva, S., Vasileva, M., Zgureva, D., Georgieva, B., & Babeva, T. (2019, March). Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. In Journal of Physics: Conference Series (Vol. 1186, No. 1, p. 012024). IOP Publishing.
11. Karanac, M., Đolić, M., Veličković, Z., Kapidžić, A., Ivanovski, V., Mitrić, M., & Marinković, A. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of environmental management, 224, 263–276.
12. Rentsenorov, U., Davaabal, B., & Temuujin, J. (2018). Synthesis of Zeolite A from Mongolian Coal Fly Ash by Hydrothermal Treatment. In Solid State Phenomena (Vol. 271, pp. 1–8). Trans Tech Publications Ltd.
13. Lee, Y. R., Soe, J. T., Zhang, S., Ahn, J. W., Park, M. B., & Ahn, W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821–843.
14. Wulandari, W., Paramitha, T., Rizkiana, J., & Sasongko, D. (2019, June). Characterization of Zeolite A from Coal Fly Ash Via Fusion-Hydrothermal Synthesis Method. In IOP Conference Series: Materials Science and Engineering (Vol. 543, No. 1, p. 012034). IOP Publishing.
15. Galarneau, A., Mehlhorn, D., Guenneau, F., Coasne, B., Villemot, F., Minoux, D., … & Dath, J. P. (2018). Specific surface area determination for microporous/mesoporous materials: the case of mesoporous FAU-Y zeolites. Langmuir, 34(47), 14134–14142.
16. Wang, C., Leng, S., Guo, H., Cao, L., & Huang, J. (2019). Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite. Applied Surface Science, 478, 319–326.
17. Sabadash, V., Mylanyk, O., Matsuska, O., & Gumnitsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 4 (11), 2017, 11(4), 459–462.
18. Demol, R., Vidal, D., Shu, S., Bertrand, F., & Chaouki, J. (2019). Mass transfer in the homogeneous flow regime of a bubble column. Chemical Engineering and Processing-Process Intensification, 144, 107647.
19. Titscher, P., Götz von Olenhusen, A., Arlt, T., Manke, I., & Kwade, A. (2019). Evaluation of a High- Intensive Mixing Process in a Ring Shear Mixer and Its Impact on the Properties of Composite Particles for Lithium–Sulfur Battery Cathodes. Energy Technology, 7(12), 1801059.
20. Nazari, M., Rashidi, S., & Esfahani, J. A. (2019). Mixing process and mass transfer in a novel design of induced-charge electrokinetic micromixer with a conductive mixing-chamber. International Communications in Heat and Mass Transfer, 108, 104293.
Content type: Article
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1

Files in This Item:
File Description SizeFormat 
2020v3n1_Sabadash_V-Kinetics_of_adsorption_169-174.pdf780.29 kBAdobe PDFView/Open
2020v3n1_Sabadash_V-Kinetics_of_adsorption_169-174__COVER.png474.88 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.