DC Field | Value | Language |
dc.contributor.author | Гузьова, І. О. | |
dc.contributor.author | Атаманюк, В. М. | |
dc.contributor.author | Huzova, I. | |
dc.contributor.author | Atamanyuk, V. | |
dc.date.accessioned | 2021-01-28T11:24:06Z | - |
dc.date.available | 2021-01-28T11:24:06Z | - |
dc.date.created | 2020-02-24 | |
dc.date.issued | 2020-02-24 | |
dc.identifier.citation | Гузьова І. О. Теоретичне обґрунтування та апаратурне оформлення енергоефективного методу сушіння цукатів / І. О. Гузьова, В. М. Атаманюк // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 148–154. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56077 | - |
dc.description.abstract | Розглянуто процес сушіння цукатів із груш, який відбувається профільтровуванням
теплового агента в напрямку “перфорована перегородка – шар цукатів”. Отримано
кінетичну криву сушіння та розрахований тепловий баланс процесу на основі диференційного
рівняння нестаціонарного тепломасообміну. Доведено, що накопиченої під час
сушіння теплової енергії в нижніх шарах цукатів буде достатньо для досушування верхніх
шарів. Розраховано енергетичний ефект, отриманий від впровадження нового методу
сушіння. Запропоновано та розраховано установку для енергоефективного методу сушіння цукатів. | |
dc.description.abstract | The drying process of candied pears wasresearched. The process is a filtration of a heat agent in the
direction of “perforated septum – candied fruit layer”. A kinetic drying curve, based on the differential
equation of dynamics heat and mass transfer, was obtained and the heat balance of the process was
calculated. The following was proved: the accumulated thermal energy in the lower layers of candied fruit is
enough to dry the upper layers. The energy effect is calculated; it is obtained from the introduction of a new
drying method. Equipment for the implementation of the energy-saving method of drying candied fruit is calculated. | |
dc.format.extent | 148-154 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (3), 2020 | |
dc.relation.uri | https://doi.org/10.1080/08327823.2019.1677431 | |
dc.relation.uri | https://doi.org/10.1080/08327823.2019.1677430 | |
dc.relation.uri | https://doi.org/10.1080/07373930600564357 | |
dc.relation.uri | https://doi.org/10.1080/07373939608917199 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2016.81409 | |
dc.relation.uri | https://doi.org/10.23939/ | |
dc.relation.uri | https://doi.org/10.3103/s1063455x10040053 | |
dc.relation.uri | https://doi.org/10.15421/40270129 | |
dc.subject | цукати | |
dc.subject | сушильне обладнання | |
dc.subject | тепломасообмін | |
dc.subject | енергоефективний метод | |
dc.subject | теплова енергія | |
dc.subject | candied fruits | |
dc.subject | drying equipment | |
dc.subject | heat transfer | |
dc.subject | energy-saving method | |
dc.subject | thermal energy | |
dc.title | Теоретичне обґрунтування та апаратурне оформлення енергоефективного методу сушіння цукатів | |
dc.title.alternative | Theoretic substantiation and apparatus design for the energy-saving method during candied fruits drying | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Національна академія сухопутних військ ім. гетьмана Петра Сагайдачного | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Hetman Petro Sahaidachnyi National Army Academy | |
dc.format.pages | 7 | |
dc.identifier.citationen | Huzova I. Theoretic substantiation and apparatus design for the energy-saving method during candied fruits drying / I. Huzova, V. Atamanyuk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 148–154. | |
dc.identifier.doi | doi.org/10.23939/ctas2020.01.148 | |
dc.relation.references | 1. Chanpreet Singh, Nitin Saluja & Rajeev Kamal Sharma. (2019). A computation-driven, energy-efficient and hybrid of microwave and conventional drying process for fast gooseberry candy production. Journal of Microwave Power and Electromagnetic Energy, 53(4), 259–275. https://doi.org/10.1080/08327823.2019.1677431 | |
dc.relation.references | 2. Waraporn Klinbun &Phadungsak Rattanadecho. (2019). Effects of power input and food aspect ratio on microwave thawing process of frozen food in commercial oven. Journal of Microwave Power and Electromagnetic Energy, 53(4), 225–242. https://doi.org/10.1080/08327823.2019.1677430 | |
dc.relation.references | 3. O. Alves-Filho & Y. H. Roos. (2007). Advances in Multi-Purpose Drying Operations with Phase and State Transitions. Drying Technology, 24(3), 383–396. https://doi.org/10.1080/07373930600564357 | |
dc.relation.references | 4. Catherine Bonaui, Elisabeth Dumoulin, Anne-Lucie Raoult-Wack, Z. Berk, J. J. Bimbenet, F. Courtois, G. Trystram & J. Vasseur. (2007). Food Drying and Dewatering. Drying Technology, 14(9), 2135–2170. https://doi.org/10.1080/07373939608917199 | |
dc.relation.references | 5. Atamanyuk, V., Huzova, I., Gnativ, Z., Mykychak B. (2016). Selection of optimal method of forming a layer of candied fruits during filtration drying. Eastern-European Journal of Enterprise Technologies, 5(11(83)), 10–15. https://doi.org/10.15587/1729-4061.2016.81409 | |
dc.relation.references | 6. Bhesh Bhandari &Tony Howes. (2007). Relating the Stickiness Property of Foods Undergoing Drying and Dried Products to their Surface Energetics. Drying Technology, 23(4), 781–797. doi: 10.1081/drt-200054194 | |
dc.relation.references | 7. William L. Kerr & Audrey Varner. (Published online: 30 May 2019). Chemical and physical properties of vacuum-dried red beetroot (Beta vulgaris) powders compared to other drying methods. Drying Technology. doi: 10.1080/07373937.2019.1619573 | |
dc.relation.references | 8. Z. Hardy & V. A. Jideani. (2017). Foam-mat drying technology. A review, Critical Reviews in Food Science and Nutrition,57(12), 2560–2572. doi: 10.1080/10408398. 2015.1020359 | |
dc.relation.references | 9. Malezhyk I. F., Dubkovetskyi I. V., Bandurenko H. M., Strelchenko L. V. (2015). Deklaratsiinyi patent na korysnu model No. 103371. Sposib vyrobnytstva yabluchnykh tsukativ. Ukraina [in Ukrainian]. | |
dc.relation.references | 10. Atamaniuk V. M., Humnytskyi Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Monohrafiia. Lviv: Vyavnytstvo Lvivskoi politekhniky, 276 s. [in Ukrainian]. | |
dc.relation.references | 11. Atamanyuk, V., Huzova, I., Gnativ, Z. (2018). Intensification of Drying Process During Activated Carbon Regeneration. Chemistry & Chemical Technology, 12(2), 263–271. https://doi.org/10.23939/ chcht12.02.263 | |
dc.relation.references | 12. Matsuska, O., Paranyak, R., Gumnitskii, Y. (2010). Adsorption of wastewater components by natural sorbents. Journal of Water Chemistry and Technology, 32(4), 218–222. https://doi.org/10.3103/s1063455x10040053 | |
dc.relation.references | 13. Sabadash, V., Gumnitsky, Y., Mylyanyk, A., Romaniuk, L. (2017) Simultaneous Sorption of Copper and Chromium Cations to Wastewater Treatment. Scientific Bulletin of UNFU, 27(1), 129–132 [in Ukrainian]. https://doi.org/10.15421/40270129 Actions | |
dc.relation.references | 14. Atamaniuk V. M., Huzova I. O., Humnytskyi Ya. M., Symak D. M. (2014). Patent Ukrainy na korysnu model No. 86857. Ustanovka dlia sushinnia roslynnoi syrovyny. Ukraina [in Ukrainian]. | |
dc.relation.referencesen | 1. Chanpreet Singh, Nitin Saluja & Rajeev Kamal Sharma. (2019). A computation-driven, energy-efficient and hybrid of microwave and conventional drying process for fast gooseberry candy production. Journal of Microwave Power and Electromagnetic Energy, 53(4), 259–275. https://doi.org/10.1080/08327823.2019.1677431 | |
dc.relation.referencesen | 2. Waraporn Klinbun &Phadungsak Rattanadecho. (2019). Effects of power input and food aspect ratio on microwave thawing process of frozen food in commercial oven. Journal of Microwave Power and Electromagnetic Energy, 53(4), 225–242. https://doi.org/10.1080/08327823.2019.1677430 | |
dc.relation.referencesen | 3. O. Alves-Filho & Y. H. Roos. (2007). Advances in Multi-Purpose Drying Operations with Phase and State Transitions. Drying Technology, 24(3), 383–396. https://doi.org/10.1080/07373930600564357 | |
dc.relation.referencesen | 4. Catherine Bonaui, Elisabeth Dumoulin, Anne-Lucie Raoult-Wack, Z. Berk, J. J. Bimbenet, F. Courtois, G. Trystram & J. Vasseur. (2007). Food Drying and Dewatering. Drying Technology, 14(9), 2135–2170. https://doi.org/10.1080/07373939608917199 | |
dc.relation.referencesen | 5. Atamanyuk, V., Huzova, I., Gnativ, Z., Mykychak B. (2016). Selection of optimal method of forming a layer of candied fruits during filtration drying. Eastern-European Journal of Enterprise Technologies, 5(11(83)), 10–15. https://doi.org/10.15587/1729-4061.2016.81409 | |
dc.relation.referencesen | 6. Bhesh Bhandari &Tony Howes. (2007). Relating the Stickiness Property of Foods Undergoing Drying and Dried Products to their Surface Energetics. Drying Technology, 23(4), 781–797. doi: 10.1081/drt-200054194 | |
dc.relation.referencesen | 7. William L. Kerr & Audrey Varner. (Published online: 30 May 2019). Chemical and physical properties of vacuum-dried red beetroot (Beta vulgaris) powders compared to other drying methods. Drying Technology. doi: 10.1080/07373937.2019.1619573 | |
dc.relation.referencesen | 8. Z. Hardy & V. A. Jideani. (2017). Foam-mat drying technology. A review, Critical Reviews in Food Science and Nutrition,57(12), 2560–2572. doi: 10.1080/10408398. 2015.1020359 | |
dc.relation.referencesen | 9. Malezhyk I. F., Dubkovetskyi I. V., Bandurenko H. M., Strelchenko L. V. (2015). Deklaratsiinyi patent na korysnu model No. 103371. Sposib vyrobnytstva yabluchnykh tsukativ. Ukraina [in Ukrainian]. | |
dc.relation.referencesen | 10. Atamaniuk V. M., Humnytskyi Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Monohrafiia. Lviv: Vyavnytstvo Lvivskoi politekhniky, 276 s. [in Ukrainian]. | |
dc.relation.referencesen | 11. Atamanyuk, V., Huzova, I., Gnativ, Z. (2018). Intensification of Drying Process During Activated Carbon Regeneration. Chemistry & Chemical Technology, 12(2), 263–271. https://doi.org/10.23939/ chcht12.02.263 | |
dc.relation.referencesen | 12. Matsuska, O., Paranyak, R., Gumnitskii, Y. (2010). Adsorption of wastewater components by natural sorbents. Journal of Water Chemistry and Technology, 32(4), 218–222. https://doi.org/10.3103/s1063455x10040053 | |
dc.relation.referencesen | 13. Sabadash, V., Gumnitsky, Y., Mylyanyk, A., Romaniuk, L. (2017) Simultaneous Sorption of Copper and Chromium Cations to Wastewater Treatment. Scientific Bulletin of UNFU, 27(1), 129–132 [in Ukrainian]. https://doi.org/10.15421/40270129 Actions | |
dc.relation.referencesen | 14. Atamaniuk V. M., Huzova I. O., Humnytskyi Ya. M., Symak D. M. (2014). Patent Ukrainy na korysnu model No. 86857. Ustanovka dlia sushinnia roslynnoi syrovyny. Ukraina [in Ukrainian]. | |
dc.citation.issue | 1 | |
dc.citation.spage | 148 | |
dc.citation.epage | 154 | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1
|