Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56077
Full metadata record
DC FieldValueLanguage
dc.contributor.authorГузьова, І. О.
dc.contributor.authorАтаманюк, В. М.
dc.contributor.authorHuzova, I.
dc.contributor.authorAtamanyuk, V.
dc.date.accessioned2021-01-28T11:24:06Z-
dc.date.available2021-01-28T11:24:06Z-
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.identifier.citationГузьова І. О. Теоретичне обґрунтування та апаратурне оформлення енергоефективного методу сушіння цукатів / І. О. Гузьова, В. М. Атаманюк // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 148–154.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56077-
dc.description.abstractРозглянуто процес сушіння цукатів із груш, який відбувається профільтровуванням теплового агента в напрямку “перфорована перегородка – шар цукатів”. Отримано кінетичну криву сушіння та розрахований тепловий баланс процесу на основі диференційного рівняння нестаціонарного тепломасообміну. Доведено, що накопиченої під час сушіння теплової енергії в нижніх шарах цукатів буде достатньо для досушування верхніх шарів. Розраховано енергетичний ефект, отриманий від впровадження нового методу сушіння. Запропоновано та розраховано установку для енергоефективного методу сушіння цукатів.
dc.description.abstractThe drying process of candied pears wasresearched. The process is a filtration of a heat agent in the direction of “perforated septum – candied fruit layer”. A kinetic drying curve, based on the differential equation of dynamics heat and mass transfer, was obtained and the heat balance of the process was calculated. The following was proved: the accumulated thermal energy in the lower layers of candied fruit is enough to dry the upper layers. The energy effect is calculated; it is obtained from the introduction of a new drying method. Equipment for the implementation of the energy-saving method of drying candied fruit is calculated.
dc.format.extent148-154
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.relation.urihttps://doi.org/10.1080/08327823.2019.1677431
dc.relation.urihttps://doi.org/10.1080/08327823.2019.1677430
dc.relation.urihttps://doi.org/10.1080/07373930600564357
dc.relation.urihttps://doi.org/10.1080/07373939608917199
dc.relation.urihttps://doi.org/10.15587/1729-4061.2016.81409
dc.relation.urihttps://doi.org/10.23939/
dc.relation.urihttps://doi.org/10.3103/s1063455x10040053
dc.relation.urihttps://doi.org/10.15421/40270129
dc.subjectцукати
dc.subjectсушильне обладнання
dc.subjectтепломасообмін
dc.subjectенергоефективний метод
dc.subjectтеплова енергія
dc.subjectcandied fruits
dc.subjectdrying equipment
dc.subjectheat transfer
dc.subjectenergy-saving method
dc.subjectthermal energy
dc.titleТеоретичне обґрунтування та апаратурне оформлення енергоефективного методу сушіння цукатів
dc.title.alternativeTheoretic substantiation and apparatus design for the energy-saving method during candied fruits drying
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональна академія сухопутних військ ім. гетьмана Петра Сагайдачного
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationHetman Petro Sahaidachnyi National Army Academy
dc.format.pages7
dc.identifier.citationenHuzova I. Theoretic substantiation and apparatus design for the energy-saving method during candied fruits drying / I. Huzova, V. Atamanyuk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 148–154.
dc.identifier.doidoi.org/10.23939/ctas2020.01.148
dc.relation.references1. Chanpreet Singh, Nitin Saluja & Rajeev Kamal Sharma. (2019). A computation-driven, energy-efficient and hybrid of microwave and conventional drying process for fast gooseberry candy production. Journal of Microwave Power and Electromagnetic Energy, 53(4), 259–275. https://doi.org/10.1080/08327823.2019.1677431
dc.relation.references2. Waraporn Klinbun &Phadungsak Rattanadecho. (2019). Effects of power input and food aspect ratio on microwave thawing process of frozen food in commercial oven. Journal of Microwave Power and Electromagnetic Energy, 53(4), 225–242. https://doi.org/10.1080/08327823.2019.1677430
dc.relation.references3. O. Alves-Filho & Y. H. Roos. (2007). Advances in Multi-Purpose Drying Operations with Phase and State Transitions. Drying Technology, 24(3), 383–396. https://doi.org/10.1080/07373930600564357
dc.relation.references4. Catherine Bonaui, Elisabeth Dumoulin, Anne-Lucie Raoult-Wack, Z. Berk, J. J. Bimbenet, F. Courtois, G. Trystram & J. Vasseur. (2007). Food Drying and Dewatering. Drying Technology, 14(9), 2135–2170. https://doi.org/10.1080/07373939608917199
dc.relation.references5. Atamanyuk, V., Huzova, I., Gnativ, Z., Mykychak B. (2016). Selection of optimal method of forming a layer of candied fruits during filtration drying. Eastern-European Journal of Enterprise Technologies, 5(11(83)), 10–15. https://doi.org/10.15587/1729-4061.2016.81409
dc.relation.references6. Bhesh Bhandari &Tony Howes. (2007). Relating the Stickiness Property of Foods Undergoing Drying and Dried Products to their Surface Energetics. Drying Technology, 23(4), 781–797. doi: 10.1081/drt-200054194
dc.relation.references7. William L. Kerr & Audrey Varner. (Published online: 30 May 2019). Chemical and physical properties of vacuum-dried red beetroot (Beta vulgaris) powders compared to other drying methods. Drying Technology. doi: 10.1080/07373937.2019.1619573
dc.relation.references8. Z. Hardy & V. A. Jideani. (2017). Foam-mat drying technology. A review, Critical Reviews in Food Science and Nutrition,57(12), 2560–2572. doi: 10.1080/10408398. 2015.1020359
dc.relation.references9. Malezhyk I. F., Dubkovetskyi I. V., Bandurenko H. M., Strelchenko L. V. (2015). Deklaratsiinyi patent na korysnu model No. 103371. Sposib vyrobnytstva yabluchnykh tsukativ. Ukraina [in Ukrainian].
dc.relation.references10. Atamaniuk V. M., Humnytskyi Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Monohrafiia. Lviv: Vyavnytstvo Lvivskoi politekhniky, 276 s. [in Ukrainian].
dc.relation.references11. Atamanyuk, V., Huzova, I., Gnativ, Z. (2018). Intensification of Drying Process During Activated Carbon Regeneration. Chemistry & Chemical Technology, 12(2), 263–271. https://doi.org/10.23939/ chcht12.02.263
dc.relation.references12. Matsuska, O., Paranyak, R., Gumnitskii, Y. (2010). Adsorption of wastewater components by natural sorbents. Journal of Water Chemistry and Technology, 32(4), 218–222. https://doi.org/10.3103/s1063455x10040053
dc.relation.references13. Sabadash, V., Gumnitsky, Y., Mylyanyk, A., Romaniuk, L. (2017) Simultaneous Sorption of Copper and Chromium Cations to Wastewater Treatment. Scientific Bulletin of UNFU, 27(1), 129–132 [in Ukrainian]. https://doi.org/10.15421/40270129 Actions
dc.relation.references14. Atamaniuk V. M., Huzova I. O., Humnytskyi Ya. M., Symak D. M. (2014). Patent Ukrainy na korysnu model No. 86857. Ustanovka dlia sushinnia roslynnoi syrovyny. Ukraina [in Ukrainian].
dc.relation.referencesen1. Chanpreet Singh, Nitin Saluja & Rajeev Kamal Sharma. (2019). A computation-driven, energy-efficient and hybrid of microwave and conventional drying process for fast gooseberry candy production. Journal of Microwave Power and Electromagnetic Energy, 53(4), 259–275. https://doi.org/10.1080/08327823.2019.1677431
dc.relation.referencesen2. Waraporn Klinbun &Phadungsak Rattanadecho. (2019). Effects of power input and food aspect ratio on microwave thawing process of frozen food in commercial oven. Journal of Microwave Power and Electromagnetic Energy, 53(4), 225–242. https://doi.org/10.1080/08327823.2019.1677430
dc.relation.referencesen3. O. Alves-Filho & Y. H. Roos. (2007). Advances in Multi-Purpose Drying Operations with Phase and State Transitions. Drying Technology, 24(3), 383–396. https://doi.org/10.1080/07373930600564357
dc.relation.referencesen4. Catherine Bonaui, Elisabeth Dumoulin, Anne-Lucie Raoult-Wack, Z. Berk, J. J. Bimbenet, F. Courtois, G. Trystram & J. Vasseur. (2007). Food Drying and Dewatering. Drying Technology, 14(9), 2135–2170. https://doi.org/10.1080/07373939608917199
dc.relation.referencesen5. Atamanyuk, V., Huzova, I., Gnativ, Z., Mykychak B. (2016). Selection of optimal method of forming a layer of candied fruits during filtration drying. Eastern-European Journal of Enterprise Technologies, 5(11(83)), 10–15. https://doi.org/10.15587/1729-4061.2016.81409
dc.relation.referencesen6. Bhesh Bhandari &Tony Howes. (2007). Relating the Stickiness Property of Foods Undergoing Drying and Dried Products to their Surface Energetics. Drying Technology, 23(4), 781–797. doi: 10.1081/drt-200054194
dc.relation.referencesen7. William L. Kerr & Audrey Varner. (Published online: 30 May 2019). Chemical and physical properties of vacuum-dried red beetroot (Beta vulgaris) powders compared to other drying methods. Drying Technology. doi: 10.1080/07373937.2019.1619573
dc.relation.referencesen8. Z. Hardy & V. A. Jideani. (2017). Foam-mat drying technology. A review, Critical Reviews in Food Science and Nutrition,57(12), 2560–2572. doi: 10.1080/10408398. 2015.1020359
dc.relation.referencesen9. Malezhyk I. F., Dubkovetskyi I. V., Bandurenko H. M., Strelchenko L. V. (2015). Deklaratsiinyi patent na korysnu model No. 103371. Sposib vyrobnytstva yabluchnykh tsukativ. Ukraina [in Ukrainian].
dc.relation.referencesen10. Atamaniuk V. M., Humnytskyi Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Monohrafiia. Lviv: Vyavnytstvo Lvivskoi politekhniky, 276 s. [in Ukrainian].
dc.relation.referencesen11. Atamanyuk, V., Huzova, I., Gnativ, Z. (2018). Intensification of Drying Process During Activated Carbon Regeneration. Chemistry & Chemical Technology, 12(2), 263–271. https://doi.org/10.23939/ chcht12.02.263
dc.relation.referencesen12. Matsuska, O., Paranyak, R., Gumnitskii, Y. (2010). Adsorption of wastewater components by natural sorbents. Journal of Water Chemistry and Technology, 32(4), 218–222. https://doi.org/10.3103/s1063455x10040053
dc.relation.referencesen13. Sabadash, V., Gumnitsky, Y., Mylyanyk, A., Romaniuk, L. (2017) Simultaneous Sorption of Copper and Chromium Cations to Wastewater Treatment. Scientific Bulletin of UNFU, 27(1), 129–132 [in Ukrainian]. https://doi.org/10.15421/40270129 Actions
dc.relation.referencesen14. Atamaniuk V. M., Huzova I. O., Humnytskyi Ya. M., Symak D. M. (2014). Patent Ukrainy na korysnu model No. 86857. Ustanovka dlia sushinnia roslynnoi syrovyny. Ukraina [in Ukrainian].
dc.citation.issue1
dc.citation.spage148
dc.citation.epage154
dc.coverage.placenameLviv
dc.coverage.placenameLviv
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1

Files in This Item:
File Description SizeFormat 
2020v3n1_Huzova_I-Theoretic_substantiation_148-154.pdf851 kBAdobe PDFView/Open
2020v3n1_Huzova_I-Theoretic_substantiation_148-154__COVER.png439.43 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.