Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56074
Full metadata record
DC FieldValueLanguage
dc.contributor.authorШепіда, М. В.
dc.contributor.authorКунтий, Орест Іванович
dc.contributor.authorМерцало, Іванна Павлівна
dc.contributor.authorShepida, M.
dc.contributor.authorKuntyi, K.
dc.contributor.authorMertsalo, I.
dc.date.accessioned2021-01-28T11:24:04Z-
dc.date.available2021-01-28T11:24:04Z-
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.identifier.citationShepida M. Electrodeposition of silver nanoparticles on silicone surface in dimethylformamide solutions of (NH4)[Ag(CN)2] / M. Shepida, K. Kuntyi, I. Mertsalo // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 9–13.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56074-
dc.description.abstractНаведено результати досліджень електрохімічного осадження наночастинок срібла (AgNPs) на поверхню кремнію у диметилформамідних розчинах 0,025М, 0,05М, 0,1М (NH4)[Ag(CN)2]. Поєднання імпульсного режиму електролізу та середовища органічного апротонного розчинника (DMF) забезпечує формування сферичних AgNPs розміром 50–150 нм із рівномірним розподілом їх по поверхні кремнію. Показано, що головними факторами впливу на морфологію та розміри наночастинок срібла є значення катодного потенціалу, концентрація іонів [Ag(CN)2]-та тривалість електролізу. З їх збільшенням зростають розміри наночастинок і густота заповнення ними підкладки. Встановлено, що осаджені AgNPs на поверхні підкладки є активаторами хімічного травлення останньої з одержанням поруватого кремнію.
dc.description.abstractThe article presents the results of studies of electrochemical deposition of silver nanoparticles (AgNPs) on the silicon surface in dimethylformamide solutions of 0.025M; 0.05M; 0.1M (NH4)[Ag(CN)2]. Combination of a pulsed electrolysis mode and an organic aprotic solvent medium (DMF) ensures the formation of 50–150 nm spherical AgNPs with uniform distribution over the silicon surface. It is shown that the main factors influencing the morphology and size of silver nanoparticles are the value of the cathode potential, the concentration of ions [Ag(CN)2] -and the duration of electrolysis. With their increase, the size of the nanoparticles and the density of filling the substrate increases. It was found that the deposited AgNPs on the surface of the substrate are activators of chemical etching of the latter to give porous silicon.
dc.format.extent9-13
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.subjectнаночастинки срібла
dc.subjectдиметилформамід
dc.subjectповерхня кремнію
dc.subjectелектроосадження
dc.subjectпоруватий кремній
dc.subjectsilver nanoparticles
dc.subjectdimethylformamide
dc.subjectsilicon surface
dc.subjectelectrodeposition
dc.subjectporous silicon
dc.titleElectrodeposition of silver nanoparticles on silicone surface in dimethylformamide solutions of (NH4)[Ag(CN)2]
dc.title.alternativeЕлектроосадження наночастинок срібла на поверхню кремнію з диметилформамідних розчинів (NH4)[Ag(CN)2
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages5
dc.identifier.citationenShepida M. Electrodeposition of silver nanoparticles on silicone surface in dimethylformamide solutions of (NH4)[Ag(CN)2] / M. Shepida, K. Kuntyi, I. Mertsalo // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 9–13.
dc.identifier.doidoi.org/10.23939/ctas2020.01.009
dc.relation.references1. Yakimchuk, D. V., Kaniukov, E. Y., Lepeshov, S., Bundyukova, V. D., Demyanov, S. E., Arzumanyanm, G. M., &Stranik, O. (2019). Self-organized spatially separated silver 3D dendrites as efficient plasmonic nanostructures for surface-enhanced Raman spectroscopy applications. Journal of Applied Physics, 126(23), 233105.
dc.relation.references2. Ji, X., Wang, H., Song, B., Chu, B., & He, Y. (2018). Silicon nanomaterials for biosensing and bioimaging analysis. Frontiers in chemistry, 6, 38.
dc.relation.references3. Myndrul, V., Viter, R., Savchuk, M., Shpyrka, N., Erts, D., Jevdokimovs, D., Iatsunskyi, I. (2018). Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosensors and Bioelectronics, 102, 661–667.
dc.relation.references4. Myndrul, V., Viter, R., Savchuk, M., Koval, M., Starodub, N., Silamiķelis, V., Iatsunskyi, I. (2017). Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1. Talanta, 175, 297–304.
dc.relation.references5. Boriskina, S. V., Green, M. A., Catchpole, K., Yablonovitch, E., Beard, M. C., Okada, Y.,& Sorger, V. J. (2016). Roadmap on optical energy conversion. Journal of Optics, 18(7), 073004.
dc.relation.references6. Zhang, Y., & Liu, H. (2019). Nanowires for highefficiency, low-cost solar photovoltaics. Crystals, 9(2), 87.
dc.relation.references7. Nichkalo S., Druzhinin A., Evtukh A., Bratus’ O., Steblova O., (2017). Silicon nanostructures produced by modified MacEtch method for antireflective Si surface. Nanoscale Research Letters, 12, 106.
dc.relation.references8. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., & Korniy, S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & Chemical Technology, 12(3), 305–309.
dc.relation.references9. Shepida, M., Kuntyi, O., Nichkalo, S., Zozulya, G., & Korniy, S. (2019). Deposition of gold nanoparticles via galvanic replacement in DMSO and their influence on formation of silicon nanostructures. Advances in Materials Science and Engineering, 2019.
dc.relation.references10. Kuntyi, О. І., Zozulya, G. I., Shepida, M. V., & Nichkalo, S. I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy Khimii i Khimicheskoi Tekhnologii, 2019(3), 74–82.
dc.relation.references11. Fukami, K., Kobayashi, K., Matsumoto, T., Kawamura, Y. L., Sakka, T., & Ogata, Y. H. (2008). Electrodeposition of noble metals into ordered macropores in p-type silicon. Journal of The Electrochemical Society, 155(6), D443-D448.
dc.relation.references12. Matsumoto, T., Kobayashi, K., Fukami, K., Sakka, T., & Ogata, Y. H. (2009). Electrodeposition behavior of noble metals in ordered macroporous silicon. physica status solidi c, 6(7), 1561–1565.
dc.relation.references13. Ogata, Y. H., Kobayashi, K., & Motoyama, M. (2006). Electrochemical metal deposition on silicon. Current Opinion in Solid State and Materials Science, 10(3–4), 163–172.
dc.relation.references14. Kuntyi, O., Shepida, M., Dobrovetska, O., Nichkalo, S., Korniy, S., & Eliyashevskyy, Y. (2019). Pulse Electrodeposition of Palladium Nanoparticles onto Silicon in DMSO. Journal of Chemistry, 2019.
dc.relation.references15. Shepida, М. V., Kuntyi, О. І., Dobrovets’ka, О. Y., Kornii, S. А., & Eliyashevs’kyi, Y. І. (2019). Deposition of Gold Nanoparticles onSilicon in the Pulse Mode of Electrolysis in a DMSO Solution. Materials Science, 55(3), 417–423.
dc.relation.references16. Kuntyi, O. I., Stakhira, P. Y., Cherpak, V. V., Bilan, O. I., Okhremchuk, Y. V., Voznyak, L. Y., & Hotra, Z. Y. (2011). Electrochemical depositions of palladium on indium tin oxide-coated glass and their possible application in organic electronics technology. Micro & Nano Letters, 6(8), 592–595.
dc.relation.references17. Kelso, M. V., Tubbesing, J. Z., Chen, Q., & Switzer, J. A. (2018). Epitaxial electrodeposition of chiral metal surfaces on silicon (643). Journal of the American Chemical Society, 140(46), 15812–15819.
dc.relation.references18. Márquez, K., Staikov, G., & Schultze, J. W. (2003). Silver deposition on silicon and glassy carbon. A comparative study in cyanide medium. Electrochimica acta, 48(7), 875–882.
dc.relation.references19. Koda, R., Fukami, K., Sakka, T., & Ogata, Y. H. (2012). Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes. Nanoscale research letters, 7(1), 330.
dc.relation.references20. Oskam, G., & Searson, P. C. (2000). Electrochemistry of Gold Deposition on n-Si (100). Journal of the Electrochemical Society, 147(6), 2199.
dc.relation.references21. Sus, L., Okhremchuk, Y., Saldan, I., Kuntyi, O., Reshetnyak, O., & Korniy, S. (2015). Controlled gold deposition by pulse electrolysis. Materials Letters, 139, 296–299.
dc.relation.references22. Han, H., Huang, Z., Lee, W. (2014). Metalassisted chemical etching of silicon and nanotechnology applications. Nanotoday, 9, 271–304.
dc.relation.references23. Huang, Z., Geyer, N., Werner, P., Boor, J. de, and Gösele, U. (2011). Metal-assisted chemical etching of silicon: A review. Advanced Materials, 23, 285–308.
dc.relation.references24. Ashrafabadi, S., Eshghi, H., (2018). Singlecrystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices and Microstructures, 120, 517–524.
dc.relation.references25. Duran, J. M., & Sarangan, A. (2017). Fabrication of ultrahigh aspect ratio silicon nanostructures using selfassembled gold metal-assisted chemical etching. Journal of Micro/Nanolithography, MEMS, and MOEMS, 16(1),014502.
dc.relation.references26. Rajkumar, K., Pandian, R., Sankarakumar, A., & Rajendra Kumar, R. T. (2017). Engineering silicon to porous silicon and silicon nanowires by metal-assisted chemical etching: role of Ag size and electron-scavenging rate on morphology control and mechanism. ACS omega, 2(8), 4540–4547.
dc.relation.references27. Kovacs, A., & Mescheder, U. (2012). Transport mechanisms in nanostructured porous silicon layers for sensor and filter applications. Sensors and Actuators B: Chemical, 175, 179–185.
dc.relation.referencesen1. Yakimchuk, D. V., Kaniukov, E. Y., Lepeshov, S., Bundyukova, V. D., Demyanov, S. E., Arzumanyanm, G. M., &Stranik, O. (2019). Self-organized spatially separated silver 3D dendrites as efficient plasmonic nanostructures for surface-enhanced Raman spectroscopy applications. Journal of Applied Physics, 126(23), 233105.
dc.relation.referencesen2. Ji, X., Wang, H., Song, B., Chu, B., & He, Y. (2018). Silicon nanomaterials for biosensing and bioimaging analysis. Frontiers in chemistry, 6, 38.
dc.relation.referencesen3. Myndrul, V., Viter, R., Savchuk, M., Shpyrka, N., Erts, D., Jevdokimovs, D., Iatsunskyi, I. (2018). Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosensors and Bioelectronics, 102, 661–667.
dc.relation.referencesen4. Myndrul, V., Viter, R., Savchuk, M., Koval, M., Starodub, N., Silamiķelis, V., Iatsunskyi, I. (2017). Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1. Talanta, 175, 297–304.
dc.relation.referencesen5. Boriskina, S. V., Green, M. A., Catchpole, K., Yablonovitch, E., Beard, M. C., Okada, Y.,& Sorger, V. J. (2016). Roadmap on optical energy conversion. Journal of Optics, 18(7), 073004.
dc.relation.referencesen6. Zhang, Y., & Liu, H. (2019). Nanowires for highefficiency, low-cost solar photovoltaics. Crystals, 9(2), 87.
dc.relation.referencesen7. Nichkalo S., Druzhinin A., Evtukh A., Bratus’ O., Steblova O., (2017). Silicon nanostructures produced by modified MacEtch method for antireflective Si surface. Nanoscale Research Letters, 12, 106.
dc.relation.referencesen8. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., & Korniy, S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & Chemical Technology, 12(3), 305–309.
dc.relation.referencesen9. Shepida, M., Kuntyi, O., Nichkalo, S., Zozulya, G., & Korniy, S. (2019). Deposition of gold nanoparticles via galvanic replacement in DMSO and their influence on formation of silicon nanostructures. Advances in Materials Science and Engineering, 2019.
dc.relation.referencesen10. Kuntyi, O. I., Zozulya, G. I., Shepida, M. V., & Nichkalo, S. I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy Khimii i Khimicheskoi Tekhnologii, 2019(3), 74–82.
dc.relation.referencesen11. Fukami, K., Kobayashi, K., Matsumoto, T., Kawamura, Y. L., Sakka, T., & Ogata, Y. H. (2008). Electrodeposition of noble metals into ordered macropores in p-type silicon. Journal of The Electrochemical Society, 155(6), D443-D448.
dc.relation.referencesen12. Matsumoto, T., Kobayashi, K., Fukami, K., Sakka, T., & Ogata, Y. H. (2009). Electrodeposition behavior of noble metals in ordered macroporous silicon. physica status solidi c, 6(7), 1561–1565.
dc.relation.referencesen13. Ogata, Y. H., Kobayashi, K., & Motoyama, M. (2006). Electrochemical metal deposition on silicon. Current Opinion in Solid State and Materials Science, 10(3–4), 163–172.
dc.relation.referencesen14. Kuntyi, O., Shepida, M., Dobrovetska, O., Nichkalo, S., Korniy, S., & Eliyashevskyy, Y. (2019). Pulse Electrodeposition of Palladium Nanoparticles onto Silicon in DMSO. Journal of Chemistry, 2019.
dc.relation.referencesen15. Shepida, M. V., Kuntyi, O. I., Dobrovetska, O. Y., Kornii, S. A., & Eliyashevskyi, Y. I. (2019). Deposition of Gold Nanoparticles onSilicon in the Pulse Mode of Electrolysis in a DMSO Solution. Materials Science, 55(3), 417–423.
dc.relation.referencesen16. Kuntyi, O. I., Stakhira, P. Y., Cherpak, V. V., Bilan, O. I., Okhremchuk, Y. V., Voznyak, L. Y., & Hotra, Z. Y. (2011). Electrochemical depositions of palladium on indium tin oxide-coated glass and their possible application in organic electronics technology. Micro & Nano Letters, 6(8), 592–595.
dc.relation.referencesen17. Kelso, M. V., Tubbesing, J. Z., Chen, Q., & Switzer, J. A. (2018). Epitaxial electrodeposition of chiral metal surfaces on silicon (643). Journal of the American Chemical Society, 140(46), 15812–15819.
dc.relation.referencesen18. Márquez, K., Staikov, G., & Schultze, J. W. (2003). Silver deposition on silicon and glassy carbon. A comparative study in cyanide medium. Electrochimica acta, 48(7), 875–882.
dc.relation.referencesen19. Koda, R., Fukami, K., Sakka, T., & Ogata, Y. H. (2012). Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes. Nanoscale research letters, 7(1), 330.
dc.relation.referencesen20. Oskam, G., & Searson, P. C. (2000). Electrochemistry of Gold Deposition on n-Si (100). Journal of the Electrochemical Society, 147(6), 2199.
dc.relation.referencesen21. Sus, L., Okhremchuk, Y., Saldan, I., Kuntyi, O., Reshetnyak, O., & Korniy, S. (2015). Controlled gold deposition by pulse electrolysis. Materials Letters, 139, 296–299.
dc.relation.referencesen22. Han, H., Huang, Z., Lee, W. (2014). Metalassisted chemical etching of silicon and nanotechnology applications. Nanotoday, 9, 271–304.
dc.relation.referencesen23. Huang, Z., Geyer, N., Werner, P., Boor, J. de, and Gösele, U. (2011). Metal-assisted chemical etching of silicon: A review. Advanced Materials, 23, 285–308.
dc.relation.referencesen24. Ashrafabadi, S., Eshghi, H., (2018). Singlecrystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices and Microstructures, 120, 517–524.
dc.relation.referencesen25. Duran, J. M., & Sarangan, A. (2017). Fabrication of ultrahigh aspect ratio silicon nanostructures using selfassembled gold metal-assisted chemical etching. Journal of Micro/Nanolithography, MEMS, and MOEMS, 16(1),014502.
dc.relation.referencesen26. Rajkumar, K., Pandian, R., Sankarakumar, A., & Rajendra Kumar, R. T. (2017). Engineering silicon to porous silicon and silicon nanowires by metal-assisted chemical etching: role of Ag size and electron-scavenging rate on morphology control and mechanism. ACS omega, 2(8), 4540–4547.
dc.relation.referencesen27. Kovacs, A., & Mescheder, U. (2012). Transport mechanisms in nanostructured porous silicon layers for sensor and filter applications. Sensors and Actuators B: Chemical, 175, 179–185.
dc.citation.issue1
dc.citation.spage9
dc.citation.epage13
dc.coverage.placenameLviv
dc.coverage.placenameLviv
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1

Files in This Item:
File Description SizeFormat 
2020v3n1_Shepida_M-Electrodeposition_of_silver_9-13.pdf690.62 kBAdobe PDFView/Open
2020v3n1_Shepida_M-Electrodeposition_of_silver_9-13__COVER.png488.55 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.