DC Field | Value | Language |
dc.contributor.author | Герасимчук, С. І. | |
dc.contributor.author | Полюжин, І. П. | |
dc.contributor.author | Мельник, Г. В. | |
dc.contributor.author | Павловський, Ю. П. | |
dc.contributor.author | Сергеєв, В. В. | |
dc.contributor.author | Gerasymchuk, S. | |
dc.contributor.author | Poliuzhyn, I. | |
dc.contributor.author | Melnyk, H. | |
dc.contributor.author | Pavlovskyi, Yu. | |
dc.contributor.author | Serheyev, V. | |
dc.date.accessioned | 2021-01-28T11:23:53Z | - |
dc.date.available | 2021-01-28T11:23:53Z | - |
dc.date.created | 2020-02-24 | |
dc.date.issued | 2020-02-24 | |
dc.identifier.citation | Фазова рівновага пара-рідина розчинів диметилтелуру та диметилкадмію / С. І. Герасимчук, І. П. Полюжин, Г. В. Мельник, Ю. П. Павловський, В. В. Сергеєв // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 1–8. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56063 | - |
dc.description.abstract | Для опису рівноваги пара–рідина в системі диметилтелур-диметилкадмій запропоновано
напівемпіричну модель Вільсона. Параметри моделі Вільсона розраховано за
допомогою методу ітерацій математичного пакету програм Mathсad 14 на основі даних,
отриманих із вимірювання температурної залежності тиску насиченої пари високочистих
зразків диметилтелуру, диметилкадмію та їхнього еквімолекулярного розчину.
За параметрами моделі Вільсона розраховано коефіцієнти активності компонентів розчину,
коефіцієнт розділення, надлишкові функції розчину (HE, GE, TSE) та побудовано ізотермічні Р-Х
діаграми стану системи диметилтелур-диметилкадмій. За результатами розрахунків
зроблено висновки: про існування асоціації молекул у системі диметилтелур-диметилкадмій
в еквімолекулярному співвідношенні; про від’ємне відхилення цієї системи від закону
Рауля; про гомогенність розчину диметилтелур-диметилкадмій в усьому інтервалі
концентрацій та температур (280–340 К). | |
dc.description.abstract | To describe the vapor-liquid equilibrium in the dimethyltelluride-dimethylcadmium system,
we proposed a semiempirical Wilson model. The parameters of the Wilson model were calculated using the method of iterations by means of
the Mathsad 14 software package based on the data obtained by us to measure the temperature dependence of the
saturation vapor pressure for high-purity samples of dimethyltelluride, dimethyl cadmium and their equimolecular
solution. For the parameters of the Wilson model, the activity coefficients of the solution components, the partition
coefficient, the excess solution functions (HE, GE, TSE) were calculated, and isothermal P-X state diagrams for the
dimethyltelluride-dimethyl cadmium system were ploted. Based on the results of the calculations, the following
conclusions were reached: the existence of molecules association in equimolecular ratio for the dimethyltellurdimethylcadmium
system; the negative deviation of this system from Raoul’s law; on the homogeneity of the
dimethyltellur-dimethylcadmium solution over the entire concentration and temperature range (280–340 K). | |
dc.format.extent | 1-8 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (3), 2020 | |
dc.subject | диметилтелур | |
dc.subject | диметилкадмій | |
dc.subject | модель Вільсона | |
dc.subject | азеотроп | |
dc.subject | тиск насиченої пари | |
dc.subject | діаграма стану | |
dc.subject | коефіцієнти активності | |
dc.subject | надлишкові функції змішування | |
dc.subject | dimethyltelluride | |
dc.subject | dimethylcadmium | |
dc.subject | the Wilson model | |
dc.subject | azeotrope | |
dc.subject | saturated vapor pressure | |
dc.subject | status chart | |
dc.subject | activity coefficients | |
dc.subject | redundant blending functions | |
dc.title | Фазова рівновага пара-рідина розчинів диметилтелуру та диметилкадмію | |
dc.title.alternative | Phase vapor–liquid equilibrium for the solutions of dimethyltelluride and dimethylcadmium | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 8 | |
dc.identifier.citationen | Phase vapor–liquid equilibrium for the solutions of dimethyltelluride and dimethylcadmium / S. Gerasymchuk, I. Poliuzhyn, H. Melnyk, Yu. Pavlovskyi, V. Serheyev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 1–8. | |
dc.identifier.doi | doi.org/10.23939/ctas2020.01.001 | |
dc.relation.references | 1. Thompson, H. W., & Linnett, J. W. (1936). The vapour pressures and association of some metallic and non-metallic alkyls. Transactions of the Faraday Society, 32, 681–685. doi:10.1039/tf9363200681. | |
dc.relation.references | 2. Long, L., & Cattanach, J. (1961). Antoine vapourpressure equations and heats of vaporization for the dimethyls of zinc, cadmium and mercury. Journal of Inorganic and Nuclear Chemistry, 20(3–4), 340–342. doi: 10.1016/0022-1902(61)80285-6. | |
dc.relation.references | 3. Efremov, E. A., & Fedorov, V. A. (1975). Temperaturna zalezhnist davlennya nasyshchennoho para dymetylselena i dymetyltellura. Zhurnal fizychnoyi khimiyi, 49 (5), 1336–1337. | |
dc.relation.references | 4. Baev, A. K., & Hubar, YU. A. (1975). Termodynamichni kharakterystyky paroobrazovaniya dymetylselena i dymetyltellura. Trudy khimichnykh ta khimichnykh tekhnolohiy Hor’kivs’koho derzhavnoho universytetu, (4), 86–84. | |
dc.relation.references | 5. Baev, A. K. (1987). Khimiya hazoheterohennykh systemnykh elementoorhanichnykh z’yednan’. Mins’k: Nauka ta tekhnika. | |
dc.relation.references | 6. Gerasimchuk, S. I., Pavlovskii, Y. P., & VanChin-Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 86(10),1500–1506. doi:10.1134/s003602441210010x | |
dc.relation.references | 7. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365–371. doi:10.1134/s0036024414030054. | |
dc.relation.references | 8. Herasymchuk, S. I., Mel’nyk, H. V., Sobechko, I. B., Tymnyak, Z. S., & Pavlovs’kyy, YU. P. (2018). Termodynamika vyprominyuye dymetylkadmiyu, dymetylteluru ta yikh ekvimolekulyarne rozchynennya. Visnyk Natsional’noho universytetu “L’vivs’ka. | |
dc.relation.references | 9. Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Y. P., & Sergeyev, V. V. (2019). Phase Vapor–Liquid Equilibrium for the Solutions of Dimethylzinc and Dimethyl Selenide. Chemistry, Technology and Application of Substances, 2(2), 1–6. doi: 10.23939/ctas2019.02.001. | |
dc.relation.references | 10. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill Кулагина, Т. Г. (1988). | |
dc.relation.references | 11. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127–130. doi:10.1021/ja01056a002. | |
dc.relation.references | 12. Porshnev, S. V, & Belenkova, I. V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg. | |
dc.relation.references | 13. Naryshkin, D. G. (2016). Khimicheskaya termodinamika s Mathcad. Moskva: RIOR: INFRA-M. | |
dc.relation.references | 14. Serheyev, V. (2013). Khimichna termodynamika spoluk akrylovoho ryadu. (Dys. dokt. khim. nauk). Natsional’nyy Universytet Ukrayiny “L’vivs’ka Politekhnika”, L’viv. | |
dc.relation.references | 15. Sergeyev, V. V., Gerasimchuk, S. I., & Pavlovskiy, YU. P. (2019). Termodinamicheskiye funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188–194. doi:10.1134/ S0044453719020274. | |
dc.relation.references | 16. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7–12. doi:10.23939/chcht12.01.007. | |
dc.relation.references | 17. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131–2136. doi:10.1134/s003602441711022x. | |
dc.relation.references | 18. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131–135. doi:10.23939/chcht09.02.131. | |
dc.relation.references | 19. Belousov, V. P. (1970). Teploty smesheniya zhidkostey. Leningrad: Khimiya. | |
dc.relation.references | 20. Barclay, I. M., & Butler, J. A. V. (1938). The entropy of solution. Transactions of the Faraday Society, 34, 1445–1454. doi:10.1039/tf9383401445. | |
dc.relation.references | 21. Hammett, L. P. (1970). Physical organic chemistry: reaction rates equilibria and mechanisms. New York: McGraw-Hill. | |
dc.relation.references | 22. Starikov, E., & Nordén, B. (2012). Entropy–enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chemical Physics Letters, 538, 118–120. doi: 10.1016/j.cplett.2012.04.028. | |
dc.relation.references | 23. Leffler, J. E., & Grunwald, E. (1989). Rates and equilibria of organic reactions: as treated by statistical, thermodynamic, and extrathermodynamic methods. Mineola (N.Y.): Dover. | |
dc.relation.referencesen | 1. Thompson, H. W., & Linnett, J. W. (1936). The vapour pressures and association of some metallic and non-metallic alkyls. Transactions of the Faraday Society, 32, 681–685. doi:10.1039/tf9363200681. | |
dc.relation.referencesen | 2. Long, L., & Cattanach, J. (1961). Antoine vapourpressure equations and heats of vaporization for the dimethyls of zinc, cadmium and mercury. Journal of Inorganic and Nuclear Chemistry, 20(3–4), 340–342. doi: 10.1016/0022-1902(61)80285-6. | |
dc.relation.referencesen | 3. Efremov, E. A., & Fedorov, V. A. (1975). Temperaturna zalezhnist davlennya nasyshchennoho para dymetylselena i dymetyltellura. Zhurnal fizychnoyi khimiyi, 49 (5), 1336–1337. | |
dc.relation.referencesen | 4. Baev, A. K., & Hubar, YU. A. (1975). Termodynamichni kharakterystyky paroobrazovaniya dymetylselena i dymetyltellura. Trudy khimichnykh ta khimichnykh tekhnolohiy Hor’kivs’koho derzhavnoho universytetu, (4), 86–84. | |
dc.relation.referencesen | 5. Baev, A. K. (1987). Khimiya hazoheterohennykh systemnykh elementoorhanichnykh z’yednan’. Mins’k: Nauka ta tekhnika. | |
dc.relation.referencesen | 6. Gerasimchuk, S. I., Pavlovskii, Y. P., & VanChin-Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 86(10),1500–1506. doi:10.1134/s003602441210010x | |
dc.relation.referencesen | 7. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365–371. doi:10.1134/s0036024414030054. | |
dc.relation.referencesen | 8. Herasymchuk, S. I., Mel’nyk, H. V., Sobechko, I. B., Tymnyak, Z. S., & Pavlovs’kyy, YU. P. (2018). Termodynamika vyprominyuye dymetylkadmiyu, dymetylteluru ta yikh ekvimolekulyarne rozchynennya. Visnyk Natsional’noho universytetu "L’vivs’ka. | |
dc.relation.referencesen | 9. Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Y. P., & Sergeyev, V. V. (2019). Phase Vapor–Liquid Equilibrium for the Solutions of Dimethylzinc and Dimethyl Selenide. Chemistry, Technology and Application of Substances, 2(2), 1–6. doi: 10.23939/ctas2019.02.001. | |
dc.relation.referencesen | 10. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill Kulahina, T. H. (1988). | |
dc.relation.referencesen | 11. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127–130. doi:10.1021/ja01056a002. | |
dc.relation.referencesen | 12. Porshnev, S. V, & Belenkova, I. V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg. | |
dc.relation.referencesen | 13. Naryshkin, D. G. (2016). Khimicheskaya termodinamika s Mathcad. Moskva: RIOR: INFRA-M. | |
dc.relation.referencesen | 14. Serheyev, V. (2013). Khimichna termodynamika spoluk akrylovoho ryadu. (Dys. dokt. khim. nauk). Natsional’nyy Universytet Ukrayiny "L’vivs’ka Politekhnika", L’viv. | |
dc.relation.referencesen | 15. Sergeyev, V. V., Gerasimchuk, S. I., & Pavlovskiy, YU. P. (2019). Termodinamicheskiye funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188–194. doi:10.1134/ S0044453719020274. | |
dc.relation.referencesen | 16. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7–12. doi:10.23939/chcht12.01.007. | |
dc.relation.referencesen | 17. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131–2136. doi:10.1134/s003602441711022x. | |
dc.relation.referencesen | 18. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131–135. doi:10.23939/chcht09.02.131. | |
dc.relation.referencesen | 19. Belousov, V. P. (1970). Teploty smesheniya zhidkostey. Leningrad: Khimiya. | |
dc.relation.referencesen | 20. Barclay, I. M., & Butler, J. A. V. (1938). The entropy of solution. Transactions of the Faraday Society, 34, 1445–1454. doi:10.1039/tf9383401445. | |
dc.relation.referencesen | 21. Hammett, L. P. (1970). Physical organic chemistry: reaction rates equilibria and mechanisms. New York: McGraw-Hill. | |
dc.relation.referencesen | 22. Starikov, E., & Nordén, B. (2012). Entropy–enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chemical Physics Letters, 538, 118–120. doi: 10.1016/j.cplett.2012.04.028. | |
dc.relation.referencesen | 23. Leffler, J. E., & Grunwald, E. (1989). Rates and equilibria of organic reactions: as treated by statistical, thermodynamic, and extrathermodynamic methods. Mineola (N.Y.): Dover. | |
dc.citation.issue | 1 | |
dc.citation.spage | 1 | |
dc.citation.epage | 8 | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1
|