DC Field | Value | Language |
dc.contributor.author | Шаповалов, Юрій | |
dc.contributor.author | Shapovalov, Yuriy | |
dc.date.accessioned | 2021-01-22T11:45:42Z | - |
dc.date.available | 2021-01-22T11:45:42Z | - |
dc.date.created | 2020-02-24 | |
dc.date.issued | 2020-02-24 | |
dc.identifier.citation | Shapovalov Y. On the Adequacy of the Frequency-Symbolic Method for Linear Parametric Circuits Analysis / Yuriy Shapovalov // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 1. — P. 27–36. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55981 | - |
dc.description.abstract | Частотний символьний метод (ЧС-метод) аналізу
усталеного режиму лінійних параметричних кіл призначений
для формування їх передавальних функцій у частотній
області. Передавальні функції апроксимуються поліномами
Фур’є та містять комплексну змінну, змінну час та
параметри елементів кола у вигляді символів. Коефіцієнти
таких поліномів Фур’є за ЧС-методом виступають невідомими
у символьних системах лінійних алгебраїчних
рівнянь (ССЛАР), і визначаються як їх розв’язки у символьному вигляді.
Подано спосіб формування апроксимаційного виразу,
який забезпечує адекватність обчислень.
Наведено приклади та результати комп’ютерних експериментів.
Основана на частотному символьному методі
система функцій MAOPCs використовується при оптимальному проектуванні
електронних пристроїв завадостійких скритних радіотехнічних систем з використанням кодових сигналів. | |
dc.description.abstract | A frequency-symbolic method (FSmethod) of the analysis of steady-state mode of linear
parametric circuits is intended for forming their transfer
functions in the frequency domain. Transfer functions
are approximated by Fourier polynomials and contain a
complex variable, time variable and parameters of circuit
elements in the form of symbols. The coefficients of
such Fourier polynomials by the FS-method are
unknown in the symbolic systems of linear algebraic
equations (SSLAE), and are defined as their solutions in
symbolic form.
In the paper we present a method of forming an
approximation expression which ensures the adequacy
of calculations. Examples and results of computer
experiments are given. The system of functions
MAOPCs based on a frequency-symbolic method is used
for the optimal design of electronic devices of noiseimmune
hidden radio engineering systems using code signals. | |
dc.format.extent | 27-36 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 1 (10), 2020 | |
dc.subject | circuit analysis computing | |
dc.subject | linear periodically time-variable circuits | |
dc.subject | frequency-symbolic method | |
dc.subject | frequency-symbolic models | |
dc.subject | approximations of transfer functions by Fourier polynomials | |
dc.title | On the Adequacy of the Frequency-Symbolic Method for Linear Parametric Circuits Analysis | |
dc.title.alternative | Про адекватність частотного символьного методу аналізу лінійних параметричних кіл | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 10 | |
dc.identifier.citationen | Shapovalov Y. On the Adequacy of the Frequency-Symbolic Method for Linear Parametric Circuits Analysis / Yuriy Shapovalov // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 1. — P. 27–36. | |
dc.relation.references | [1] Yu. Shapovalov, B. Mandziy, and S. Mankovsky, “The peculiarities of analysis of linear parametric circuit performed by frequency-symbolic method”, Przeglad Elektrotechniczny, vol. 86, no. 1, pp. 158–160, 2010. | |
dc.relation.references | [2] Yu. Shapovalov and B. Mandziy, “Symbolic analysis of linear parametric circuits:: state of problems, content and directions of application”, Theoretical Electrical Engineering, issue 59, pp. 3–9, 2008. | |
dc.relation.references | [3] Yu. Shapovalov, Symbolic analysis of linear electrical circuits in the frequency domain. Fixed and variable parameters, Lviv, Lviv Polytechnic National University publication, p. 324, 2014. | |
dc.relation.references | [4] L. A. Zadeh, “Frequency Analysis of Variable Networks”, in Proc. IRE, vol. 38, issue 3, pp. 291–299, 1950. | |
dc.relation.references | [5] Solodov А. V. Linear automatic systems with variable parameters / А. V. Solodov, F. S. Petrov. – Moscow: Nauka, 1971. 620 p. | |
dc.relation.references | [6] I. Gonorovkiy, Radioengineering circuits and signals: Textbook for higher schools. М.: Radio and Communications, 4 rd ed., p. 512, 1986. | |
dc.relation.references | [7] S. Baskakov, Radioengineering circuits and signals, Textbook for higher schools, spec. “Radioengineering”, 2nd ed., М.: Vysshaia shkola, p. 448, 1988. | |
dc.relation.references | [8] М. А. Krasnoselskiy, G. М. Vainikko, P. P. Zabreiko, Ya. B. Rutitskiy, and V. Ya. Stetsenko, Approximate solution of operator equations, М.: Nauka, Main editorial office of physical and mathematical leterature, p. 456, 1969. | |
dc.relation.references | [9] К. Fletcher, Numerical methods based on the Galerkin method; transl. from Eng, М.: Mir, p. 352, 1988. | |
dc.relation.references | [10] Yu. Shapovalov, B. Mandziy and D. Bachyk “The system functions MAOPCs for analysis and optimization of linear periodically time-variable circuits based on the frequency symbolic method”, Przeglad Elektrotechniczny, vol. 91, no 7, pp. 39–42, 2015. | |
dc.relation.references | [11] Yu. Shapovalov, D. Bachyk, K. Detsyk, and R. Romaniuk, “Application of the Frequency Symbolic Method for the Analysis of Linear Periodically Time-Varying Circuits”, Przeglad Elektrotechniczny, vol. 96, no. 3, pp. 93–97. 2020. | |
dc.relation.referencesen | [1] Yu. Shapovalov, B. Mandziy, and S. Mankovsky, "The peculiarities of analysis of linear parametric circuit performed by frequency-symbolic method", Przeglad Elektrotechniczny, vol. 86, no. 1, pp. 158–160, 2010. | |
dc.relation.referencesen | [2] Yu. Shapovalov and B. Mandziy, "Symbolic analysis of linear parametric circuits:: state of problems, content and directions of application", Theoretical Electrical Engineering, issue 59, pp. 3–9, 2008. | |
dc.relation.referencesen | [3] Yu. Shapovalov, Symbolic analysis of linear electrical circuits in the frequency domain. Fixed and variable parameters, Lviv, Lviv Polytechnic National University publication, p. 324, 2014. | |
dc.relation.referencesen | [4] L. A. Zadeh, "Frequency Analysis of Variable Networks", in Proc. IRE, vol. 38, issue 3, pp. 291–299, 1950. | |
dc.relation.referencesen | [5] Solodov A. V. Linear automatic systems with variable parameters, A. V. Solodov, F. S. Petrov, Moscow: Nauka, 1971. 620 p. | |
dc.relation.referencesen | [6] I. Gonorovkiy, Radioengineering circuits and signals: Textbook for higher schools. M., Radio and Communications, 4 rd ed., p. 512, 1986. | |
dc.relation.referencesen | [7] S. Baskakov, Radioengineering circuits and signals, Textbook for higher schools, spec. "Radioengineering", 2nd ed., M., Vysshaia shkola, p. 448, 1988. | |
dc.relation.referencesen | [8] M. A. Krasnoselskiy, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskiy, and V. Ya. Stetsenko, Approximate solution of operator equations, M., Nauka, Main editorial office of physical and mathematical leterature, p. 456, 1969. | |
dc.relation.referencesen | [9] K. Fletcher, Numerical methods based on the Galerkin method; transl. from Eng, M., Mir, p. 352, 1988. | |
dc.relation.referencesen | [10] Yu. Shapovalov, B. Mandziy and D. Bachyk "The system functions MAOPCs for analysis and optimization of linear periodically time-variable circuits based on the frequency symbolic method", Przeglad Elektrotechniczny, vol. 91, no 7, pp. 39–42, 2015. | |
dc.relation.referencesen | [11] Yu. Shapovalov, D. Bachyk, K. Detsyk, and R. Romaniuk, "Application of the Frequency Symbolic Method for the Analysis of Linear Periodically Time-Varying Circuits", Przeglad Elektrotechniczny, vol. 96, no. 3, pp. 93–97. 2020. | |
dc.citation.issue | 1 | |
dc.citation.spage | 27 | |
dc.citation.epage | 36 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Computational Problems Of Electrical Engineering. – 2020 – Vol. 10, No. 1
|