Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/55796
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoronel, Stalin
dc.contributor.authorPauker, Christian Sandoval
dc.contributor.authorJentzsch, Paul Vargas
dc.contributor.authorTorre, Ernesto de la
dc.contributor.authorEndara, Diana
dc.contributor.authorMuñoz-Bisesti, Florinella
dc.date.accessioned2020-12-30T08:53:33Z-
dc.date.available2020-12-30T08:53:33Z-
dc.date.created2020-01-24
dc.date.issued2020-01-24
dc.identifier.citationTitanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol / Stalin Coronel, Christian Sandoval Pauker, Paul Vargas Jentzsch, Ernesto de la Torre, Diana Endara, Florinella Muñoz-Bisesti // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 161–168.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55796-
dc.description.abstractДосліджено імпрегнацію діоксиду титану та міді на активоване вугілля (AC) з метою видалення фенолу. З урахуванням кількості каталізатора і ступеня деградації фенолу було обрано та охарактеризовано чотири композити. Встановлено, що присутність та склад каталізаторів впливають як на адсорбцію, так і на фотокаталітичну активність.
dc.description.abstractThe incorporation of titanium dioxide and copper onto activated carbon for phenol removal was evaluated. Based on catalyst contents and phenol degradation, four composites were selected and characterized. The results showed that both adsorption and photocatalytic activities were influenced by the presence and arrangement of the catalysts.
dc.format.extent161-168
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (14), 2020
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2005.04.043
dc.relation.urihttps://doi.org/10.1016/j.bej.2004.09.006
dc.relation.urihttps://doi.org/10.1016/S1369-703X(01)00101-2
dc.relation.urihttps://doi.org/10.1016/j.crci.2015.03.006
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2008.05.007
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2008.02.059
dc.relation.urihttps://doi.org/10.1016/j.watres.2005.09.029
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2004.03.015
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2007.01.095
dc.relation.urihttps://doi.org/10.1016/j.jece.2014.12.014
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2010.08.061
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2008.09.003
dc.relation.urihttps://doi.org/10.1016/j.watres.2006.08.027
dc.relation.urihttps://doi.org/10.3103/S1063455X17030067
dc.relation.urihttps://doi.org/10.3390/catal3010189
dc.relation.urihttps://doi.org/10.1039/c3cp54146k
dc.relation.urihttps://doi.org/10.1016/j.jiec.2014.10.043
dc.relation.urihttps://doi.org/10.1016/j.jece.2015.07.009
dc.relation.urihttps://doi.org/10.1016/j.carbon.2014.04.066
dc.relation.urihttps://doi.org/10.1021/am503674e
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2013.02.051
dc.relation.urihttps://doi.org/10.1016/0927-7757(93)80311-2
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2006.07.002
dc.relation.urihttps://doi.org/10.1016/j.watres.2011.06.008
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2005.08.025
dc.relation.urihttps://doi.org/10.1016/j.porgcoat.2008.07.005
dc.relation.urihttps://doi.org/10.1016/j.desal.2004.06.090
dc.relation.urihttps://doi.org/10.1016/j.psep.2015.10.016
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2006.03.019
dc.relation.urihttps://doi.org/10.1016/j.elecom.2004.06.008
dc.relation.urihttps://doi.org/10.1016/j.jcis.2012.06.044
dc.relation.urihttps://doi.org/10.1016/j.jcis.2010.04.052
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2012.02.004
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.08.118
dc.subjectCalgon GRC 20
dc.subjectгетерогенний фотокаталіз
dc.subjectфенол
dc.subjectгідрохінон
dc.subjectпірокатехол
dc.subjectTiO2/Cu/карбоновий композит
dc.subjectCalgon GRC 20
dc.subjectheterogeneous photocatalysis
dc.subjectphenol
dc.subjecthydroquinone
dc.subjectpyrocatechol
dc.subjectTiO2/Cu/ carbon composite
dc.titleTitanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol
dc.title.alternativeДіоксид титану/мідь/карбонові композити для фотокаталитичної деградації фенолу
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Coronel S., Sandoval Pauker C., Vargas Jentzsch P., de la Torre E., Endara D., Muñoz-Bisesti F., 2020
dc.contributor.affiliationEscuela Politecnica Nacional
dc.format.pages8
dc.identifier.citationenTitanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol / Stalin Coronel, Christian Sandoval Pauker, Paul Vargas Jentzsch, Ernesto de la Torre, Diana Endara, Florinella Muñoz-Bisesti // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 161–168.
dc.identifier.doidoi.org/10.23939/chcht14.02.161
dc.relation.references[1] Arutchelvan V., Kanakasabai V., Nagarajan S. et al.: J. Hazard. Mater., 2005, 127, 238. https://doi.org/10.1016/j.jhazmat.2005.04.043
dc.relation.references[2] Kumar A., Kumar S., Kumar S.: Biochem. Eng. J., 2005, 22, 151. https://doi.org/10.1016/j.bej.2004.09.006
dc.relation.references[3] Bandhyopadhyay K., Das D., Bhattacharyya P. et al.: Biochem. Eng. J., 2001, 8, 179. https://doi.org/10.1016/S1369-703X(01)00101-2
dc.relation.references[4] Dobrosz-Gómez I., Gómez-García M., López Zamora S. et al.: Comptes Rendus Chim., 2015, 18, 1170. https://doi.org/10.1016/j.crci.2015.03.006
dc.relation.references[5] Ma J., Ding Z., Wei G. et al.: J. Environ. Manage., 2009, 90, 1168. https://doi.org/10.1016/j.jenvman.2008.05.007
dc.relation.references[6] Peng X., Yu Y., Tang C. et al.: Sci. Total Environ., 2008, 397, 158. https://doi.org/10.1016/j.scitotenv.2008.02.059
dc.relation.references[7] Schwarzbauer J., Heim S.: Water Res., 2005, 39, 4735. https://doi.org/10.1016/j.watres.2005.09.029
dc.relation.references[8] Stackelber P., Furlong E., Meyer M. et al.: Sci. Total Environ., 2004, 329, 99. https://doi.org/10.1016/j.scitotenv.2004.03.015
dc.relation.references[9] Stackelberg P., Gibs J., Furlong E. et al.: Sci. Total Environ., 2007, 377, 255. https://doi.org/10.1016/j.scitotenv.2007.01.095
dc.relation.references[10] Sivasubramanian S., Namasivayam S.: J. Environ. Chem. Eng., 2015, 3, 243. https://doi.org/10.1016/j.jece.2014.12.014
dc.relation.references[11] Oller I., Malato S., Sánchez-Pérez J.: Sci. Total Environ., 2011, 409, 4141. https://doi.org/10.1016/j.scitotenv.2010.08.061
dc.relation.references[12] Lin S., Juang R.: J. Environ. Manage., 2009, 90, 1336. https://doi.org/10.1016/j.jenvman.2008.09.003
dc.relation.references[13] Lefebvre O., Moletta R.: Water Res., 2006, 40, 3671. https://doi.org/10.1016/j.watres.2006.08.027
dc.relation.references[14] Brooms T., Onyango M., Ochieng A.: J. Water Chem. Technol., 2017, 39, 155. https://doi.org/10.3103/S1063455X17030067
dc.relation.references[15] Ibhadon A., Fitzpatrick P.: Catalysts, 2013, 3, 189. https://doi.org/10.3390/catal3010189
dc.relation.references[16] Kulkarni M., Thakur P.: Chem. Chem. Technol., 2010, 4, 265.
dc.relation.references[17] Liu J., Zhang G.: Phys. Chem. Chem. Phys., 2014, 16, 8178. https://doi.org/10.1039/c3cp54146k
dc.relation.references[18] Zangeneh H., Zinatizadeh A., Habibi M. et al.: J. Ind. Eng. Chem., 2015, 26, 1. https://doi.org/10.1016/j.jiec.2014.10.043
dc.relation.references[19] Benjwal P., Kar K.: J. Environ. Chem. Eng., 2015, 3, 2076. https://doi.org/10.1016/j.jece.2015.07.009
dc.relation.references[20] Andrade M., Carmona R., Mestre A. et al.: Carbon, 2014, 76, 183. https://doi.org/10.1016/j.carbon.2014.04.066
dc.relation.references[21] Chen Y., Huang W., He D. et al.: ACS Appl. Mater. Interfaces, 2014, 6, 14405. https://doi.org/10.1021/am503674e
dc.relation.references[22] Khalid N., Ahmed E., Hong Z. et al.: Ceram. Int., 2013, 39, 7107. https://doi.org/10.1016/j.ceramint.2013.02.051
dc.relation.references[23] Newcombe G., Hayes R., Drikas M.: Colloids Surface A, 1993, 78, 65. https://doi.org/10.1016/0927-7757(93)80311-2
dc.relation.references[24] Nahar M., Hasegawa K., Kagaya S.: Chemosphere, 2006, 65, 1976. https://doi.org/10.1016/j.chemosphere.2006.07.002
dc.relation.references[25] Carabineiro S., Thavorn-Amornsri T., Pereira M. et al.: Water Res., 2011, 45, 4583. https://doi.org/10.1016/j.watres.2011.06.008
dc.relation.references[26] Özkaya B.: J. Hazard. Mater., 2006, 129, 158. https://doi.org/10.1016/j.jhazmat.2005.08.025
dc.relation.references[27] Shtykova L., Fant C., Handa P. et al.: Prog. Org. Coatings, 2009, 64, 20. https://doi.org/10.1016/j.porgcoat.2008.07.005
dc.relation.references[28] Bekkouche S., Bouhelassa M., Hadj Salah N. et al.: Desalination, 2004, 166, 355. https://doi.org/10.1016/j.desal.2004.06.090
dc.relation.references[29] Sohrabi S., Akhlaghian F.: Process Saf. Environ. Prot., 2016, 99, 120. https://doi.org/10.1016/j.psep.2015.10.016
dc.relation.references[30] Colón G., Maicu M., Hidalgo M. et al.: Appl. Catal. B, 2006, 67, 41. https://doi.org/10.1016/j.apcatb.2006.03.019
dc.relation.references[31] Li J., Liu L., Yu Y. et al.: Electrochem. Commun., 2004, 6, 940. https://doi.org/10.1016/j.elecom.2004.06.008
dc.relation.references[32] Liu J., Jin J., Deng Z. et al.: J. Colloid Interface Sci., 2012, 384, 1. https://doi.org/10.1016/j.jcis.2012.06.044
dc.relation.references[33] Li Y., Yang X., Rooke J. et al.: J. Colloid Interface Sci., 2010, 348, 303. https://doi.org/10.1016/j.jcis.2010.04.052
dc.relation.references[34] Huanosta-Gutiérrez T., Dantas R., Ramírez-Zamora R. et al.: J. Hazard. Mater., 2012, 213-214, 325. https://doi.org/10.1016/j.jhazmat.2012.02.004
dc.relation.references[35] Velasco L., Tsyntsarski B., Petrova B. et al.: J. Hazard. Mater., 2010, 184, 843. https://doi.org/10.1016/j.jhazmat.2010.08.118
dc.relation.referencesen[1] Arutchelvan V., Kanakasabai V., Nagarajan S. et al., J. Hazard. Mater., 2005, 127, 238. https://doi.org/10.1016/j.jhazmat.2005.04.043
dc.relation.referencesen[2] Kumar A., Kumar S., Kumar S., Biochem. Eng. J., 2005, 22, 151. https://doi.org/10.1016/j.bej.2004.09.006
dc.relation.referencesen[3] Bandhyopadhyay K., Das D., Bhattacharyya P. et al., Biochem. Eng. J., 2001, 8, 179. https://doi.org/10.1016/S1369-703X(01)00101-2
dc.relation.referencesen[4] Dobrosz-Gómez I., Gómez-García M., López Zamora S. et al., Comptes Rendus Chim., 2015, 18, 1170. https://doi.org/10.1016/j.crci.2015.03.006
dc.relation.referencesen[5] Ma J., Ding Z., Wei G. et al., J. Environ. Manage., 2009, 90, 1168. https://doi.org/10.1016/j.jenvman.2008.05.007
dc.relation.referencesen[6] Peng X., Yu Y., Tang C. et al., Sci. Total Environ., 2008, 397, 158. https://doi.org/10.1016/j.scitotenv.2008.02.059
dc.relation.referencesen[7] Schwarzbauer J., Heim S., Water Res., 2005, 39, 4735. https://doi.org/10.1016/j.watres.2005.09.029
dc.relation.referencesen[8] Stackelber P., Furlong E., Meyer M. et al., Sci. Total Environ., 2004, 329, 99. https://doi.org/10.1016/j.scitotenv.2004.03.015
dc.relation.referencesen[9] Stackelberg P., Gibs J., Furlong E. et al., Sci. Total Environ., 2007, 377, 255. https://doi.org/10.1016/j.scitotenv.2007.01.095
dc.relation.referencesen[10] Sivasubramanian S., Namasivayam S., J. Environ. Chem. Eng., 2015, 3, 243. https://doi.org/10.1016/j.jece.2014.12.014
dc.relation.referencesen[11] Oller I., Malato S., Sánchez-Pérez J., Sci. Total Environ., 2011, 409, 4141. https://doi.org/10.1016/j.scitotenv.2010.08.061
dc.relation.referencesen[12] Lin S., Juang R., J. Environ. Manage., 2009, 90, 1336. https://doi.org/10.1016/j.jenvman.2008.09.003
dc.relation.referencesen[13] Lefebvre O., Moletta R., Water Res., 2006, 40, 3671. https://doi.org/10.1016/j.watres.2006.08.027
dc.relation.referencesen[14] Brooms T., Onyango M., Ochieng A., J. Water Chem. Technol., 2017, 39, 155. https://doi.org/10.3103/S1063455X17030067
dc.relation.referencesen[15] Ibhadon A., Fitzpatrick P., Catalysts, 2013, 3, 189. https://doi.org/10.3390/catal3010189
dc.relation.referencesen[16] Kulkarni M., Thakur P., Chem. Chem. Technol., 2010, 4, 265.
dc.relation.referencesen[17] Liu J., Zhang G., Phys. Chem. Chem. Phys., 2014, 16, 8178. https://doi.org/10.1039/P.3cp54146k
dc.relation.referencesen[18] Zangeneh H., Zinatizadeh A., Habibi M. et al., J. Ind. Eng. Chem., 2015, 26, 1. https://doi.org/10.1016/j.jiec.2014.10.043
dc.relation.referencesen[19] Benjwal P., Kar K., J. Environ. Chem. Eng., 2015, 3, 2076. https://doi.org/10.1016/j.jece.2015.07.009
dc.relation.referencesen[20] Andrade M., Carmona R., Mestre A. et al., Carbon, 2014, 76, 183. https://doi.org/10.1016/j.carbon.2014.04.066
dc.relation.referencesen[21] Chen Y., Huang W., He D. et al., ACS Appl. Mater. Interfaces, 2014, 6, 14405. https://doi.org/10.1021/am503674e
dc.relation.referencesen[22] Khalid N., Ahmed E., Hong Z. et al., Ceram. Int., 2013, 39, 7107. https://doi.org/10.1016/j.ceramint.2013.02.051
dc.relation.referencesen[23] Newcombe G., Hayes R., Drikas M., Colloids Surface A, 1993, 78, 65. https://doi.org/10.1016/0927-7757(93)80311-2
dc.relation.referencesen[24] Nahar M., Hasegawa K., Kagaya S., Chemosphere, 2006, 65, 1976. https://doi.org/10.1016/j.chemosphere.2006.07.002
dc.relation.referencesen[25] Carabineiro S., Thavorn-Amornsri T., Pereira M. et al., Water Res., 2011, 45, 4583. https://doi.org/10.1016/j.watres.2011.06.008
dc.relation.referencesen[26] Özkaya B., J. Hazard. Mater., 2006, 129, 158. https://doi.org/10.1016/j.jhazmat.2005.08.025
dc.relation.referencesen[27] Shtykova L., Fant C., Handa P. et al., Prog. Org. Coatings, 2009, 64, 20. https://doi.org/10.1016/j.porgcoat.2008.07.005
dc.relation.referencesen[28] Bekkouche S., Bouhelassa M., Hadj Salah N. et al., Desalination, 2004, 166, 355. https://doi.org/10.1016/j.desal.2004.06.090
dc.relation.referencesen[29] Sohrabi S., Akhlaghian F., Process Saf. Environ. Prot., 2016, 99, 120. https://doi.org/10.1016/j.psep.2015.10.016
dc.relation.referencesen[30] Colón G., Maicu M., Hidalgo M. et al., Appl. Catal. B, 2006, 67, 41. https://doi.org/10.1016/j.apcatb.2006.03.019
dc.relation.referencesen[31] Li J., Liu L., Yu Y. et al., Electrochem. Commun., 2004, 6, 940. https://doi.org/10.1016/j.elecom.2004.06.008
dc.relation.referencesen[32] Liu J., Jin J., Deng Z. et al., J. Colloid Interface Sci., 2012, 384, 1. https://doi.org/10.1016/j.jcis.2012.06.044
dc.relation.referencesen[33] Li Y., Yang X., Rooke J. et al., J. Colloid Interface Sci., 2010, 348, 303. https://doi.org/10.1016/j.jcis.2010.04.052
dc.relation.referencesen[34] Huanosta-Gutiérrez T., Dantas R., Ramírez-Zamora R. et al., J. Hazard. Mater., 2012, 213-214, 325. https://doi.org/10.1016/j.jhazmat.2012.02.004
dc.relation.referencesen[35] Velasco L., Tsyntsarski B., Petrova B. et al., J. Hazard. Mater., 2010, 184, 843. https://doi.org/10.1016/j.jhazmat.2010.08.118
dc.citation.volume14
dc.citation.issue2
dc.citation.spage161
dc.citation.epage168
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2

Files in This Item:
File Description SizeFormat 
2020v14n2_Coronel_S-Titanium_Dioxide_Copper_161-168.pdf892.83 kBAdobe PDFView/Open
2020v14n2_Coronel_S-Titanium_Dioxide_Copper_161-168__COVER.png579.23 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.