DC Field | Value | Language |
dc.contributor.author | Coronel, Stalin | |
dc.contributor.author | Pauker, Christian Sandoval | |
dc.contributor.author | Jentzsch, Paul Vargas | |
dc.contributor.author | Torre, Ernesto de la | |
dc.contributor.author | Endara, Diana | |
dc.contributor.author | Muñoz-Bisesti, Florinella | |
dc.date.accessioned | 2020-12-30T08:53:33Z | - |
dc.date.available | 2020-12-30T08:53:33Z | - |
dc.date.created | 2020-01-24 | |
dc.date.issued | 2020-01-24 | |
dc.identifier.citation | Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol / Stalin Coronel, Christian Sandoval Pauker, Paul Vargas Jentzsch, Ernesto de la Torre, Diana Endara, Florinella Muñoz-Bisesti // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 161–168. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55796 | - |
dc.description.abstract | Досліджено імпрегнацію діоксиду титану
та міді на активоване вугілля (AC) з метою видалення фенолу.
З урахуванням кількості каталізатора і ступеня деградації
фенолу було обрано та охарактеризовано чотири композити.
Встановлено, що присутність та склад каталізаторів впливають як на адсорбцію, так і на фотокаталітичну активність. | |
dc.description.abstract | The incorporation of titanium dioxide and copper onto activated carbon for phenol removal was
evaluated. Based on catalyst contents and phenol degradation, four composites were selected and characterized.
The results showed that both adsorption and photocatalytic activities were influenced by the presence and
arrangement of the catalysts. | |
dc.format.extent | 161-168 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (14), 2020 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2005.04.043 | |
dc.relation.uri | https://doi.org/10.1016/j.bej.2004.09.006 | |
dc.relation.uri | https://doi.org/10.1016/S1369-703X(01)00101-2 | |
dc.relation.uri | https://doi.org/10.1016/j.crci.2015.03.006 | |
dc.relation.uri | https://doi.org/10.1016/j.jenvman.2008.05.007 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2008.02.059 | |
dc.relation.uri | https://doi.org/10.1016/j.watres.2005.09.029 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2004.03.015 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2007.01.095 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2014.12.014 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2010.08.061 | |
dc.relation.uri | https://doi.org/10.1016/j.jenvman.2008.09.003 | |
dc.relation.uri | https://doi.org/10.1016/j.watres.2006.08.027 | |
dc.relation.uri | https://doi.org/10.3103/S1063455X17030067 | |
dc.relation.uri | https://doi.org/10.3390/catal3010189 | |
dc.relation.uri | https://doi.org/10.1039/c3cp54146k | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2014.10.043 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2015.07.009 | |
dc.relation.uri | https://doi.org/10.1016/j.carbon.2014.04.066 | |
dc.relation.uri | https://doi.org/10.1021/am503674e | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2013.02.051 | |
dc.relation.uri | https://doi.org/10.1016/0927-7757(93)80311-2 | |
dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2006.07.002 | |
dc.relation.uri | https://doi.org/10.1016/j.watres.2011.06.008 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2005.08.025 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2008.07.005 | |
dc.relation.uri | https://doi.org/10.1016/j.desal.2004.06.090 | |
dc.relation.uri | https://doi.org/10.1016/j.psep.2015.10.016 | |
dc.relation.uri | https://doi.org/10.1016/j.apcatb.2006.03.019 | |
dc.relation.uri | https://doi.org/10.1016/j.elecom.2004.06.008 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2012.06.044 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2010.04.052 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2012.02.004 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2010.08.118 | |
dc.subject | Calgon GRC 20 | |
dc.subject | гетерогенний фотокаталіз | |
dc.subject | фенол | |
dc.subject | гідрохінон | |
dc.subject | пірокатехол | |
dc.subject | TiO2/Cu/карбоновий композит | |
dc.subject | Calgon GRC 20 | |
dc.subject | heterogeneous photocatalysis | |
dc.subject | phenol | |
dc.subject | hydroquinone | |
dc.subject | pyrocatechol | |
dc.subject | TiO2/Cu/ carbon composite | |
dc.title | Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol | |
dc.title.alternative | Діоксид титану/мідь/карбонові композити для фотокаталитичної деградації фенолу | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Coronel S., Sandoval Pauker C., Vargas Jentzsch P., de la Torre E., Endara D., Muñoz-Bisesti F., 2020 | |
dc.contributor.affiliation | Escuela Politecnica Nacional | |
dc.format.pages | 8 | |
dc.identifier.citationen | Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol / Stalin Coronel, Christian Sandoval Pauker, Paul Vargas Jentzsch, Ernesto de la Torre, Diana Endara, Florinella Muñoz-Bisesti // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 161–168. | |
dc.identifier.doi | doi.org/10.23939/chcht14.02.161 | |
dc.relation.references | [1] Arutchelvan V., Kanakasabai V., Nagarajan S. et al.: J. Hazard. Mater., 2005, 127, 238. https://doi.org/10.1016/j.jhazmat.2005.04.043 | |
dc.relation.references | [2] Kumar A., Kumar S., Kumar S.: Biochem. Eng. J., 2005, 22, 151. https://doi.org/10.1016/j.bej.2004.09.006 | |
dc.relation.references | [3] Bandhyopadhyay K., Das D., Bhattacharyya P. et al.: Biochem. Eng. J., 2001, 8, 179. https://doi.org/10.1016/S1369-703X(01)00101-2 | |
dc.relation.references | [4] Dobrosz-Gómez I., Gómez-García M., López Zamora S. et al.: Comptes Rendus Chim., 2015, 18, 1170. https://doi.org/10.1016/j.crci.2015.03.006 | |
dc.relation.references | [5] Ma J., Ding Z., Wei G. et al.: J. Environ. Manage., 2009, 90, 1168. https://doi.org/10.1016/j.jenvman.2008.05.007 | |
dc.relation.references | [6] Peng X., Yu Y., Tang C. et al.: Sci. Total Environ., 2008, 397, 158. https://doi.org/10.1016/j.scitotenv.2008.02.059 | |
dc.relation.references | [7] Schwarzbauer J., Heim S.: Water Res., 2005, 39, 4735. https://doi.org/10.1016/j.watres.2005.09.029 | |
dc.relation.references | [8] Stackelber P., Furlong E., Meyer M. et al.: Sci. Total Environ., 2004, 329, 99. https://doi.org/10.1016/j.scitotenv.2004.03.015 | |
dc.relation.references | [9] Stackelberg P., Gibs J., Furlong E. et al.: Sci. Total Environ., 2007, 377, 255. https://doi.org/10.1016/j.scitotenv.2007.01.095 | |
dc.relation.references | [10] Sivasubramanian S., Namasivayam S.: J. Environ. Chem. Eng., 2015, 3, 243. https://doi.org/10.1016/j.jece.2014.12.014 | |
dc.relation.references | [11] Oller I., Malato S., Sánchez-Pérez J.: Sci. Total Environ., 2011, 409, 4141. https://doi.org/10.1016/j.scitotenv.2010.08.061 | |
dc.relation.references | [12] Lin S., Juang R.: J. Environ. Manage., 2009, 90, 1336. https://doi.org/10.1016/j.jenvman.2008.09.003 | |
dc.relation.references | [13] Lefebvre O., Moletta R.: Water Res., 2006, 40, 3671. https://doi.org/10.1016/j.watres.2006.08.027 | |
dc.relation.references | [14] Brooms T., Onyango M., Ochieng A.: J. Water Chem. Technol., 2017, 39, 155. https://doi.org/10.3103/S1063455X17030067 | |
dc.relation.references | [15] Ibhadon A., Fitzpatrick P.: Catalysts, 2013, 3, 189. https://doi.org/10.3390/catal3010189 | |
dc.relation.references | [16] Kulkarni M., Thakur P.: Chem. Chem. Technol., 2010, 4, 265. | |
dc.relation.references | [17] Liu J., Zhang G.: Phys. Chem. Chem. Phys., 2014, 16, 8178. https://doi.org/10.1039/c3cp54146k | |
dc.relation.references | [18] Zangeneh H., Zinatizadeh A., Habibi M. et al.: J. Ind. Eng. Chem., 2015, 26, 1. https://doi.org/10.1016/j.jiec.2014.10.043 | |
dc.relation.references | [19] Benjwal P., Kar K.: J. Environ. Chem. Eng., 2015, 3, 2076. https://doi.org/10.1016/j.jece.2015.07.009 | |
dc.relation.references | [20] Andrade M., Carmona R., Mestre A. et al.: Carbon, 2014, 76, 183. https://doi.org/10.1016/j.carbon.2014.04.066 | |
dc.relation.references | [21] Chen Y., Huang W., He D. et al.: ACS Appl. Mater. Interfaces, 2014, 6, 14405. https://doi.org/10.1021/am503674e | |
dc.relation.references | [22] Khalid N., Ahmed E., Hong Z. et al.: Ceram. Int., 2013, 39, 7107. https://doi.org/10.1016/j.ceramint.2013.02.051 | |
dc.relation.references | [23] Newcombe G., Hayes R., Drikas M.: Colloids Surface A, 1993, 78, 65. https://doi.org/10.1016/0927-7757(93)80311-2 | |
dc.relation.references | [24] Nahar M., Hasegawa K., Kagaya S.: Chemosphere, 2006, 65, 1976. https://doi.org/10.1016/j.chemosphere.2006.07.002 | |
dc.relation.references | [25] Carabineiro S., Thavorn-Amornsri T., Pereira M. et al.: Water Res., 2011, 45, 4583. https://doi.org/10.1016/j.watres.2011.06.008 | |
dc.relation.references | [26] Özkaya B.: J. Hazard. Mater., 2006, 129, 158. https://doi.org/10.1016/j.jhazmat.2005.08.025 | |
dc.relation.references | [27] Shtykova L., Fant C., Handa P. et al.: Prog. Org. Coatings, 2009, 64, 20. https://doi.org/10.1016/j.porgcoat.2008.07.005 | |
dc.relation.references | [28] Bekkouche S., Bouhelassa M., Hadj Salah N. et al.: Desalination, 2004, 166, 355. https://doi.org/10.1016/j.desal.2004.06.090 | |
dc.relation.references | [29] Sohrabi S., Akhlaghian F.: Process Saf. Environ. Prot., 2016, 99, 120. https://doi.org/10.1016/j.psep.2015.10.016 | |
dc.relation.references | [30] Colón G., Maicu M., Hidalgo M. et al.: Appl. Catal. B, 2006, 67, 41. https://doi.org/10.1016/j.apcatb.2006.03.019 | |
dc.relation.references | [31] Li J., Liu L., Yu Y. et al.: Electrochem. Commun., 2004, 6, 940. https://doi.org/10.1016/j.elecom.2004.06.008 | |
dc.relation.references | [32] Liu J., Jin J., Deng Z. et al.: J. Colloid Interface Sci., 2012, 384, 1. https://doi.org/10.1016/j.jcis.2012.06.044 | |
dc.relation.references | [33] Li Y., Yang X., Rooke J. et al.: J. Colloid Interface Sci., 2010, 348, 303. https://doi.org/10.1016/j.jcis.2010.04.052 | |
dc.relation.references | [34] Huanosta-Gutiérrez T., Dantas R., Ramírez-Zamora R. et al.: J. Hazard. Mater., 2012, 213-214, 325. https://doi.org/10.1016/j.jhazmat.2012.02.004 | |
dc.relation.references | [35] Velasco L., Tsyntsarski B., Petrova B. et al.: J. Hazard. Mater., 2010, 184, 843. https://doi.org/10.1016/j.jhazmat.2010.08.118 | |
dc.relation.referencesen | [1] Arutchelvan V., Kanakasabai V., Nagarajan S. et al., J. Hazard. Mater., 2005, 127, 238. https://doi.org/10.1016/j.jhazmat.2005.04.043 | |
dc.relation.referencesen | [2] Kumar A., Kumar S., Kumar S., Biochem. Eng. J., 2005, 22, 151. https://doi.org/10.1016/j.bej.2004.09.006 | |
dc.relation.referencesen | [3] Bandhyopadhyay K., Das D., Bhattacharyya P. et al., Biochem. Eng. J., 2001, 8, 179. https://doi.org/10.1016/S1369-703X(01)00101-2 | |
dc.relation.referencesen | [4] Dobrosz-Gómez I., Gómez-García M., López Zamora S. et al., Comptes Rendus Chim., 2015, 18, 1170. https://doi.org/10.1016/j.crci.2015.03.006 | |
dc.relation.referencesen | [5] Ma J., Ding Z., Wei G. et al., J. Environ. Manage., 2009, 90, 1168. https://doi.org/10.1016/j.jenvman.2008.05.007 | |
dc.relation.referencesen | [6] Peng X., Yu Y., Tang C. et al., Sci. Total Environ., 2008, 397, 158. https://doi.org/10.1016/j.scitotenv.2008.02.059 | |
dc.relation.referencesen | [7] Schwarzbauer J., Heim S., Water Res., 2005, 39, 4735. https://doi.org/10.1016/j.watres.2005.09.029 | |
dc.relation.referencesen | [8] Stackelber P., Furlong E., Meyer M. et al., Sci. Total Environ., 2004, 329, 99. https://doi.org/10.1016/j.scitotenv.2004.03.015 | |
dc.relation.referencesen | [9] Stackelberg P., Gibs J., Furlong E. et al., Sci. Total Environ., 2007, 377, 255. https://doi.org/10.1016/j.scitotenv.2007.01.095 | |
dc.relation.referencesen | [10] Sivasubramanian S., Namasivayam S., J. Environ. Chem. Eng., 2015, 3, 243. https://doi.org/10.1016/j.jece.2014.12.014 | |
dc.relation.referencesen | [11] Oller I., Malato S., Sánchez-Pérez J., Sci. Total Environ., 2011, 409, 4141. https://doi.org/10.1016/j.scitotenv.2010.08.061 | |
dc.relation.referencesen | [12] Lin S., Juang R., J. Environ. Manage., 2009, 90, 1336. https://doi.org/10.1016/j.jenvman.2008.09.003 | |
dc.relation.referencesen | [13] Lefebvre O., Moletta R., Water Res., 2006, 40, 3671. https://doi.org/10.1016/j.watres.2006.08.027 | |
dc.relation.referencesen | [14] Brooms T., Onyango M., Ochieng A., J. Water Chem. Technol., 2017, 39, 155. https://doi.org/10.3103/S1063455X17030067 | |
dc.relation.referencesen | [15] Ibhadon A., Fitzpatrick P., Catalysts, 2013, 3, 189. https://doi.org/10.3390/catal3010189 | |
dc.relation.referencesen | [16] Kulkarni M., Thakur P., Chem. Chem. Technol., 2010, 4, 265. | |
dc.relation.referencesen | [17] Liu J., Zhang G., Phys. Chem. Chem. Phys., 2014, 16, 8178. https://doi.org/10.1039/P.3cp54146k | |
dc.relation.referencesen | [18] Zangeneh H., Zinatizadeh A., Habibi M. et al., J. Ind. Eng. Chem., 2015, 26, 1. https://doi.org/10.1016/j.jiec.2014.10.043 | |
dc.relation.referencesen | [19] Benjwal P., Kar K., J. Environ. Chem. Eng., 2015, 3, 2076. https://doi.org/10.1016/j.jece.2015.07.009 | |
dc.relation.referencesen | [20] Andrade M., Carmona R., Mestre A. et al., Carbon, 2014, 76, 183. https://doi.org/10.1016/j.carbon.2014.04.066 | |
dc.relation.referencesen | [21] Chen Y., Huang W., He D. et al., ACS Appl. Mater. Interfaces, 2014, 6, 14405. https://doi.org/10.1021/am503674e | |
dc.relation.referencesen | [22] Khalid N., Ahmed E., Hong Z. et al., Ceram. Int., 2013, 39, 7107. https://doi.org/10.1016/j.ceramint.2013.02.051 | |
dc.relation.referencesen | [23] Newcombe G., Hayes R., Drikas M., Colloids Surface A, 1993, 78, 65. https://doi.org/10.1016/0927-7757(93)80311-2 | |
dc.relation.referencesen | [24] Nahar M., Hasegawa K., Kagaya S., Chemosphere, 2006, 65, 1976. https://doi.org/10.1016/j.chemosphere.2006.07.002 | |
dc.relation.referencesen | [25] Carabineiro S., Thavorn-Amornsri T., Pereira M. et al., Water Res., 2011, 45, 4583. https://doi.org/10.1016/j.watres.2011.06.008 | |
dc.relation.referencesen | [26] Özkaya B., J. Hazard. Mater., 2006, 129, 158. https://doi.org/10.1016/j.jhazmat.2005.08.025 | |
dc.relation.referencesen | [27] Shtykova L., Fant C., Handa P. et al., Prog. Org. Coatings, 2009, 64, 20. https://doi.org/10.1016/j.porgcoat.2008.07.005 | |
dc.relation.referencesen | [28] Bekkouche S., Bouhelassa M., Hadj Salah N. et al., Desalination, 2004, 166, 355. https://doi.org/10.1016/j.desal.2004.06.090 | |
dc.relation.referencesen | [29] Sohrabi S., Akhlaghian F., Process Saf. Environ. Prot., 2016, 99, 120. https://doi.org/10.1016/j.psep.2015.10.016 | |
dc.relation.referencesen | [30] Colón G., Maicu M., Hidalgo M. et al., Appl. Catal. B, 2006, 67, 41. https://doi.org/10.1016/j.apcatb.2006.03.019 | |
dc.relation.referencesen | [31] Li J., Liu L., Yu Y. et al., Electrochem. Commun., 2004, 6, 940. https://doi.org/10.1016/j.elecom.2004.06.008 | |
dc.relation.referencesen | [32] Liu J., Jin J., Deng Z. et al., J. Colloid Interface Sci., 2012, 384, 1. https://doi.org/10.1016/j.jcis.2012.06.044 | |
dc.relation.referencesen | [33] Li Y., Yang X., Rooke J. et al., J. Colloid Interface Sci., 2010, 348, 303. https://doi.org/10.1016/j.jcis.2010.04.052 | |
dc.relation.referencesen | [34] Huanosta-Gutiérrez T., Dantas R., Ramírez-Zamora R. et al., J. Hazard. Mater., 2012, 213-214, 325. https://doi.org/10.1016/j.jhazmat.2012.02.004 | |
dc.relation.referencesen | [35] Velasco L., Tsyntsarski B., Petrova B. et al., J. Hazard. Mater., 2010, 184, 843. https://doi.org/10.1016/j.jhazmat.2010.08.118 | |
dc.citation.volume | 14 | |
dc.citation.issue | 2 | |
dc.citation.spage | 161 | |
dc.citation.epage | 168 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2
|