Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/55785
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMammadov, Asif
dc.contributor.authorPashazade, Gunel
dc.contributor.authorGasymova, Afarida
dc.contributor.authorSharifova, Ulviya
dc.date.accessioned2020-12-30T08:53:20Z-
dc.date.available2020-12-30T08:53:20Z-
dc.date.created2020-01-24
dc.date.issued2020-01-24
dc.identifier.citationProduction of Iron, Titanium Dioxide Modofocations and Titanium / Asif Mammadov, Gunel Pashazade, Afarida Gasymova, Ulviya Sharifova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 227–233.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55785-
dc.description.abstractВивчено умови відновлення концентратів титану-магнетиту (основні компоненти Fe 52–54 % та TiO2 5–7 %) природним газом для одержання порошку заліза та титанової фракції. З використанням теорії гранулювання в барабанному апараті та додаванням 25 % соди отримані гранули з оптимальним діаметром, вологістю, міцністю та пористістю. Встановлено, що в діапазоні температур 1143- 1198 К відбуваються реакції відновлення, якщо суміш водню та монооксиду вуглецю додається до природного газу у кількості 15 об %. Приведені блок-діаграми приготування концентратів титану-магнетиту для виробництва порошку заліза α-Fe (чистота 99 %), анатаз- і рутил-модифікацій діоксиду титану (99 % TiO2) та титану з чистотою 99 %.
dc.description.abstractConditions for the reduction of titaniummagnetite concentrates (main components are Fe 52–54 % and TiO2 5–7 %) by natural gas for obtaining iron powder and titanium fraction were studied. Based on the theory of granulation in the drum apparatus, granules with 25 % of soda fluxing additive with optimum diameter, humidity, strength and porosity were obtained. It was found that the reduction reactions in the temperature range of 1143–1198 K are carried out if a mixture of hydrogen and carbon monoxide is added to the natural gas in amount of 15 vol %. Block-diagrams for processing titaniummagnetite concentrates for the production of iron powder α-Fe (purity 99 %), anatase and rutile modifications of titanium dioxide (99 % TiO2) and titanium with a purity of 99% are presented.
dc.format.extent227-233
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (14), 2020
dc.relation.urihttps://doi.org/10.5277/ppmp120209
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2012.10.052
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.670-671.283
dc.relation.urihttps://doi.org/10.1007/978-3-319-51340-9
dc.relation.urihttps://doi.org/10.1007/s11663-012-9783-7
dc.relation.urihttps://doi.org/10.1134/S107042721708002X
dc.relation.urihttps://doi.org/10.1016/j.hydromet.2015.05.007
dc.relation.urihttps://doi.org/10.17580/or.2017.04.07
dc.relation.urihttps://doi.org/10.7868/S0002337X16100195
dc.subjectконцентрати титану-магнетиту
dc.subjectприродний газ
dc.subjectводень
dc.subjectоксид вуглецю
dc.subjectпорошок заліза
dc.subjectтитан
dc.subjecttitanium-magnetite concentrates
dc.subjectnatural gas
dc.subjecthydrogen
dc.subjectcarbon monoxide
dc.subjectiron powder
dc.subjecttitanium
dc.titleProduction of Iron, Titanium Dioxide Modofocations and Titanium
dc.title.alternativeПриготування титану-магнітних концентратів для виробництва заліза, модификацій диоксиду титану і титану
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Mammadov A., Pashazade G., Gasymova A., Sharifova U., 2020
dc.contributor.affiliationNagiyev Institute of Catalysis and Inorganic Chemistry of ANAS
dc.contributor.affiliationAzerbaijan Technical University
dc.format.pages7
dc.identifier.citationenProduction of Iron, Titanium Dioxide Modofocations and Titanium / Asif Mammadov, Gunel Pashazade, Afarida Gasymova, Ulviya Sharifova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 227–233.
dc.identifier.doidoi.org/10.23939/chcht14.02.227
dc.relation.references[1] Reznichenko V., Sadykhov G., Karyazin I.: Metally, 1997, 6, 3.
dc.relation.references[2] Alizade Z., Mikailova A., Samedzade K.: Azerb. Khim. Zh., 2008, 4, 64.
dc.relation.references[3] Mehdilo A., Irannajad M.: Physicochem. Probl. Miner. Proc., 2012, 48, 425. https://doi.org/10.5277/ppmp120209
dc.relation.references[4] Chen D., Zhao L., Liu Y. et al.: J. Hazard Mater., 2013, 88, 244. https://doi.org/10.1016/j.jhazmat.2012.10.052
dc.relation.references[5] Dmitriev A., Sheshukov O., Gazaleeva G. et al.: Appl. Mech. Mater., 2014, 283, 670. https://doi.org/10.4028/www.scientific.net/AMM.670-671.283
dc.relation.references[6] Hwang J.-Y., Jiang T., Kennedy M. et al. (Eds.): 8th International Symposium on High-Temperature Metallurgical Processing. Springer 2017. https://doi.org/10.1007/978-3-319-51340-9
dc.relation.references[7] Qiu G., Hu T, Bai C. et al.: Metall. Mater. Trans. B, 2013, 44, 252. https://doi.org/10.1007/s11663-012-9783-7
dc.relation.references[8] Kustov A., Kenova T., Zakirov R., Parfenov O.: Russ. J. Appl. Chem., 2017, 90, 1208. https://doi.org/10.1134/S107042721708002X
dc.relation.references[9] Kopkova E., Shchelokova E., Gromov P.: Hydrometall., 2015, 156, 21. https://doi.org/10.1016/j.hydromet.2015.05.007
dc.relation.references[10] Tathavadkar V., Jha A.: Proceedings of the VIIth Int.Conf. on Molten Slags Fluxes and Salts, South African Institute of Minig and Metallurgy, 2004, 255.
dc.relation.references[11] Kantemirov V., Titov R., Yakovlev A.: Obogaschepnie Rud, 2017, 4. https://doi.org/10.17580/or.2017.04.07
dc.relation.references[12] Alizade Z., Mammadov A., Qasimova A. et al.: Azerb. Khim. Zh., 2016, 1, 39.
dc.relation.references[13] Mamedov A., Samedzade G.,Gasymova A. et al.: Kondens. Sredy i Mezhfazn. Granicy, 2017, 19, 248.
dc.relation.references[14] Gasymova A., Samedzade G., Kelbaliev G. et al.: Fundamental'nye Issledovaniya, 2017, 9, 36.
dc.relation.references[15] Gudret I. Kelbaliyev, Asif N. Mamedov, Qasim M. Samedzadeet all.: Elixir Int. J. Mater. Sci., 2016, 96, 41434.
dc.relation.references[16] Manhique A.: PhD thesis, University of Pretoria, Pretoria 2012.
dc.relation.references[17] Zima T., Prosanov I.: Neorg. Mater., 2016, 52,1233. https://doi.org/10.7868/S0002337X16100195
dc.relation.references[18] metallurgu.ru/books/item/f00/s00/z0000004/st009.shtml
dc.relation.referencesen[1] Reznichenko V., Sadykhov G., Karyazin I., Metally, 1997, 6, 3.
dc.relation.referencesen[2] Alizade Z., Mikailova A., Samedzade K., Azerb. Khim. Zh., 2008, 4, 64.
dc.relation.referencesen[3] Mehdilo A., Irannajad M., Physicochem. Probl. Miner. Proc., 2012, 48, 425. https://doi.org/10.5277/ppmp120209
dc.relation.referencesen[4] Chen D., Zhao L., Liu Y. et al., J. Hazard Mater., 2013, 88, 244. https://doi.org/10.1016/j.jhazmat.2012.10.052
dc.relation.referencesen[5] Dmitriev A., Sheshukov O., Gazaleeva G. et al., Appl. Mech. Mater., 2014, 283, 670. https://doi.org/10.4028/www.scientific.net/AMM.670-671.283
dc.relation.referencesen[6] Hwang J.-Y., Jiang T., Kennedy M. et al. (Eds.): 8th International Symposium on High-Temperature Metallurgical Processing. Springer 2017. https://doi.org/10.1007/978-3-319-51340-9
dc.relation.referencesen[7] Qiu G., Hu T, Bai C. et al., Metall. Mater. Trans. B, 2013, 44, 252. https://doi.org/10.1007/s11663-012-9783-7
dc.relation.referencesen[8] Kustov A., Kenova T., Zakirov R., Parfenov O., Russ. J. Appl. Chem., 2017, 90, 1208. https://doi.org/10.1134/S107042721708002X
dc.relation.referencesen[9] Kopkova E., Shchelokova E., Gromov P., Hydrometall., 2015, 156, 21. https://doi.org/10.1016/j.hydromet.2015.05.007
dc.relation.referencesen[10] Tathavadkar V., Jha A., Proceedings of the VIIth Int.Conf. on Molten Slags Fluxes and Salts, South African Institute of Minig and Metallurgy, 2004, 255.
dc.relation.referencesen[11] Kantemirov V., Titov R., Yakovlev A., Obogaschepnie Rud, 2017, 4. https://doi.org/10.17580/or.2017.04.07
dc.relation.referencesen[12] Alizade Z., Mammadov A., Qasimova A. et al., Azerb. Khim. Zh., 2016, 1, 39.
dc.relation.referencesen[13] Mamedov A., Samedzade G.,Gasymova A. et al., Kondens. Sredy i Mezhfazn. Granicy, 2017, 19, 248.
dc.relation.referencesen[14] Gasymova A., Samedzade G., Kelbaliev G. et al., Fundamental'nye Issledovaniya, 2017, 9, 36.
dc.relation.referencesen[15] Gudret I. Kelbaliyev, Asif N. Mamedov, Qasim M. Samedzadeet all., Elixir Int. J. Mater. Sci., 2016, 96, 41434.
dc.relation.referencesen[16] Manhique A., PhD thesis, University of Pretoria, Pretoria 2012.
dc.relation.referencesen[17] Zima T., Prosanov I., Neorg. Mater., 2016, 52,1233. https://doi.org/10.7868/S0002337X16100195
dc.relation.referencesen[18] metallurgu.ru/books/item/f00/s00/z0000004/st009.shtml
dc.citation.volume14
dc.citation.issue2
dc.citation.spage227
dc.citation.epage233
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2

Files in This Item:
File Description SizeFormat 
2020v14n2_Mammadov_A-Production_of_Iron_Titanium_227-233.pdf507.67 kBAdobe PDFView/Open
2020v14n2_Mammadov_A-Production_of_Iron_Titanium_227-233__COVER.png535.1 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.