DC Field | Value | Language |
dc.contributor.author | Mammadov, Asif | |
dc.contributor.author | Pashazade, Gunel | |
dc.contributor.author | Gasymova, Afarida | |
dc.contributor.author | Sharifova, Ulviya | |
dc.date.accessioned | 2020-12-30T08:53:20Z | - |
dc.date.available | 2020-12-30T08:53:20Z | - |
dc.date.created | 2020-01-24 | |
dc.date.issued | 2020-01-24 | |
dc.identifier.citation | Production of Iron, Titanium Dioxide Modofocations and Titanium / Asif Mammadov, Gunel Pashazade, Afarida Gasymova, Ulviya Sharifova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 227–233. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55785 | - |
dc.description.abstract | Вивчено умови відновлення концентратів
титану-магнетиту (основні компоненти Fe 52–54 % та TiO2
5–7 %) природним газом для одержання порошку заліза та
титанової фракції. З використанням теорії гранулювання в
барабанному апараті та додаванням 25 % соди отримані
гранули з оптимальним діаметром, вологістю, міцністю та
пористістю. Встановлено, що в діапазоні температур 1143-
1198 К відбуваються реакції відновлення, якщо суміш водню та
монооксиду вуглецю додається до природного газу у кількості
15 об %. Приведені блок-діаграми приготування концентратів
титану-магнетиту для виробництва порошку заліза α-Fe
(чистота 99 %), анатаз- і рутил-модифікацій діоксиду титану
(99 % TiO2) та титану з чистотою 99 %. | |
dc.description.abstract | Conditions for the reduction of titaniummagnetite concentrates (main components are Fe 52–54 %
and TiO2 5–7 %) by natural gas for obtaining iron powder and titanium fraction were studied. Based on the theory of
granulation in the drum apparatus, granules with 25 % of soda fluxing additive with optimum diameter, humidity,
strength and porosity were obtained. It was found that the reduction reactions in the temperature range of 1143–1198 K are carried out if a mixture of hydrogen and
carbon monoxide is added to the natural gas in amount of 15 vol %. Block-diagrams for processing titaniummagnetite concentrates for the production of iron powder
α-Fe (purity 99 %), anatase and rutile modifications of titanium dioxide (99 % TiO2) and titanium with a purity of 99% are presented. | |
dc.format.extent | 227-233 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (14), 2020 | |
dc.relation.uri | https://doi.org/10.5277/ppmp120209 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2012.10.052 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMM.670-671.283 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-51340-9 | |
dc.relation.uri | https://doi.org/10.1007/s11663-012-9783-7 | |
dc.relation.uri | https://doi.org/10.1134/S107042721708002X | |
dc.relation.uri | https://doi.org/10.1016/j.hydromet.2015.05.007 | |
dc.relation.uri | https://doi.org/10.17580/or.2017.04.07 | |
dc.relation.uri | https://doi.org/10.7868/S0002337X16100195 | |
dc.subject | концентрати титану-магнетиту | |
dc.subject | природний газ | |
dc.subject | водень | |
dc.subject | оксид вуглецю | |
dc.subject | порошок заліза | |
dc.subject | титан | |
dc.subject | titanium-magnetite concentrates | |
dc.subject | natural gas | |
dc.subject | hydrogen | |
dc.subject | carbon monoxide | |
dc.subject | iron powder | |
dc.subject | titanium | |
dc.title | Production of Iron, Titanium Dioxide Modofocations and Titanium | |
dc.title.alternative | Приготування титану-магнітних концентратів для виробництва заліза, модификацій диоксиду титану і титану | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Mammadov A., Pashazade G., Gasymova A., Sharifova U., 2020 | |
dc.contributor.affiliation | Nagiyev Institute of Catalysis and Inorganic Chemistry of ANAS | |
dc.contributor.affiliation | Azerbaijan Technical University | |
dc.format.pages | 7 | |
dc.identifier.citationen | Production of Iron, Titanium Dioxide Modofocations and Titanium / Asif Mammadov, Gunel Pashazade, Afarida Gasymova, Ulviya Sharifova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 227–233. | |
dc.identifier.doi | doi.org/10.23939/chcht14.02.227 | |
dc.relation.references | [1] Reznichenko V., Sadykhov G., Karyazin I.: Metally, 1997, 6, 3. | |
dc.relation.references | [2] Alizade Z., Mikailova A., Samedzade K.: Azerb. Khim. Zh., 2008, 4, 64. | |
dc.relation.references | [3] Mehdilo A., Irannajad M.: Physicochem. Probl. Miner. Proc., 2012, 48, 425. https://doi.org/10.5277/ppmp120209 | |
dc.relation.references | [4] Chen D., Zhao L., Liu Y. et al.: J. Hazard Mater., 2013, 88, 244. https://doi.org/10.1016/j.jhazmat.2012.10.052 | |
dc.relation.references | [5] Dmitriev A., Sheshukov O., Gazaleeva G. et al.: Appl. Mech. Mater., 2014, 283, 670. https://doi.org/10.4028/www.scientific.net/AMM.670-671.283 | |
dc.relation.references | [6] Hwang J.-Y., Jiang T., Kennedy M. et al. (Eds.): 8th International Symposium on High-Temperature Metallurgical Processing. Springer 2017. https://doi.org/10.1007/978-3-319-51340-9 | |
dc.relation.references | [7] Qiu G., Hu T, Bai C. et al.: Metall. Mater. Trans. B, 2013, 44, 252. https://doi.org/10.1007/s11663-012-9783-7 | |
dc.relation.references | [8] Kustov A., Kenova T., Zakirov R., Parfenov O.: Russ. J. Appl. Chem., 2017, 90, 1208. https://doi.org/10.1134/S107042721708002X | |
dc.relation.references | [9] Kopkova E., Shchelokova E., Gromov P.: Hydrometall., 2015, 156, 21. https://doi.org/10.1016/j.hydromet.2015.05.007 | |
dc.relation.references | [10] Tathavadkar V., Jha A.: Proceedings of the VIIth Int.Conf. on Molten Slags Fluxes and Salts, South African Institute of Minig and Metallurgy, 2004, 255. | |
dc.relation.references | [11] Kantemirov V., Titov R., Yakovlev A.: Obogaschepnie Rud, 2017, 4. https://doi.org/10.17580/or.2017.04.07 | |
dc.relation.references | [12] Alizade Z., Mammadov A., Qasimova A. et al.: Azerb. Khim. Zh., 2016, 1, 39. | |
dc.relation.references | [13] Mamedov A., Samedzade G.,Gasymova A. et al.: Kondens. Sredy i Mezhfazn. Granicy, 2017, 19, 248. | |
dc.relation.references | [14] Gasymova A., Samedzade G., Kelbaliev G. et al.: Fundamental'nye Issledovaniya, 2017, 9, 36. | |
dc.relation.references | [15] Gudret I. Kelbaliyev, Asif N. Mamedov, Qasim M. Samedzadeet all.: Elixir Int. J. Mater. Sci., 2016, 96, 41434. | |
dc.relation.references | [16] Manhique A.: PhD thesis, University of Pretoria, Pretoria 2012. | |
dc.relation.references | [17] Zima T., Prosanov I.: Neorg. Mater., 2016, 52,1233. https://doi.org/10.7868/S0002337X16100195 | |
dc.relation.references | [18] metallurgu.ru/books/item/f00/s00/z0000004/st009.shtml | |
dc.relation.referencesen | [1] Reznichenko V., Sadykhov G., Karyazin I., Metally, 1997, 6, 3. | |
dc.relation.referencesen | [2] Alizade Z., Mikailova A., Samedzade K., Azerb. Khim. Zh., 2008, 4, 64. | |
dc.relation.referencesen | [3] Mehdilo A., Irannajad M., Physicochem. Probl. Miner. Proc., 2012, 48, 425. https://doi.org/10.5277/ppmp120209 | |
dc.relation.referencesen | [4] Chen D., Zhao L., Liu Y. et al., J. Hazard Mater., 2013, 88, 244. https://doi.org/10.1016/j.jhazmat.2012.10.052 | |
dc.relation.referencesen | [5] Dmitriev A., Sheshukov O., Gazaleeva G. et al., Appl. Mech. Mater., 2014, 283, 670. https://doi.org/10.4028/www.scientific.net/AMM.670-671.283 | |
dc.relation.referencesen | [6] Hwang J.-Y., Jiang T., Kennedy M. et al. (Eds.): 8th International Symposium on High-Temperature Metallurgical Processing. Springer 2017. https://doi.org/10.1007/978-3-319-51340-9 | |
dc.relation.referencesen | [7] Qiu G., Hu T, Bai C. et al., Metall. Mater. Trans. B, 2013, 44, 252. https://doi.org/10.1007/s11663-012-9783-7 | |
dc.relation.referencesen | [8] Kustov A., Kenova T., Zakirov R., Parfenov O., Russ. J. Appl. Chem., 2017, 90, 1208. https://doi.org/10.1134/S107042721708002X | |
dc.relation.referencesen | [9] Kopkova E., Shchelokova E., Gromov P., Hydrometall., 2015, 156, 21. https://doi.org/10.1016/j.hydromet.2015.05.007 | |
dc.relation.referencesen | [10] Tathavadkar V., Jha A., Proceedings of the VIIth Int.Conf. on Molten Slags Fluxes and Salts, South African Institute of Minig and Metallurgy, 2004, 255. | |
dc.relation.referencesen | [11] Kantemirov V., Titov R., Yakovlev A., Obogaschepnie Rud, 2017, 4. https://doi.org/10.17580/or.2017.04.07 | |
dc.relation.referencesen | [12] Alizade Z., Mammadov A., Qasimova A. et al., Azerb. Khim. Zh., 2016, 1, 39. | |
dc.relation.referencesen | [13] Mamedov A., Samedzade G.,Gasymova A. et al., Kondens. Sredy i Mezhfazn. Granicy, 2017, 19, 248. | |
dc.relation.referencesen | [14] Gasymova A., Samedzade G., Kelbaliev G. et al., Fundamental'nye Issledovaniya, 2017, 9, 36. | |
dc.relation.referencesen | [15] Gudret I. Kelbaliyev, Asif N. Mamedov, Qasim M. Samedzadeet all., Elixir Int. J. Mater. Sci., 2016, 96, 41434. | |
dc.relation.referencesen | [16] Manhique A., PhD thesis, University of Pretoria, Pretoria 2012. | |
dc.relation.referencesen | [17] Zima T., Prosanov I., Neorg. Mater., 2016, 52,1233. https://doi.org/10.7868/S0002337X16100195 | |
dc.relation.referencesen | [18] metallurgu.ru/books/item/f00/s00/z0000004/st009.shtml | |
dc.citation.volume | 14 | |
dc.citation.issue | 2 | |
dc.citation.spage | 227 | |
dc.citation.epage | 233 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2
|