Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/55781
Title: Electrochemical Synthesis of Peroxyacetic Acid on Pt/PtO and PbO2 Anodes
Other Titles: Електрохімічний синтез пероксиоцтової кислоти на Pt/PtO та PbO2 анодах
Authors: Bilous, Tetiana
Tulskaya, Alena
Ryshchenko, Igor
Chahine, Issam
Bairachnyi, Volodymyr
Affiliation: National Technical University “Kharkiv Polytechnic Institute”
Bibliographic description (Ukraine): Electrochemical Synthesis of Peroxyacetic Acid on Pt/PtO and PbO2 Anodes / Tetiana Bilous, Alena Tulskaya, Igor Ryshchenko, Issam Chahine, Volodymyr Bairachnyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 135–138.
Bibliographic description (International): Electrochemical Synthesis of Peroxyacetic Acid on Pt/PtO and PbO2 Anodes / Tetiana Bilous, Alena Tulskaya, Igor Ryshchenko, Issam Chahine, Volodymyr Bairachnyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 135–138.
Is part of: Chemistry & Chemical Technology, 2 (14), 2020
Issue: 2
Volume: 14
Issue Date: 24-Jan-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/10.23939/chcht14.02.135
Keywords: пероксиоцтова кислота
оцтова кислота
платиновий анод
диоксид свинцевий анод
промотор
перокси-частинки
peroxyacetic acid
acetic acid
platinum anode
lead-dioxide anode
promoter
peroxide particles
Number of pages: 4
Page range: 135-138
Start page: 135
End page: 138
Abstract: Вивчена кінетика анодних процесів на Pt/PtO та PbO2 анодах у водних розчинах оцтової кислоти. Встановлено, що додавання сульфатної кислоти має каталітичний ефект в електрохімічному синтезі пероксиоцтової кислоти. Обґрунтовано вибір промоторів утворення пероксичастинок. Виявлено, що I–, Cl– (вихід за струмом 1.2–1.5 %) частинки є найбільш ефективними для платинового аноду та I–, F–(вихід за струмом 0.50–0.55 %) – найбільш ефективні для диоксид свинцевого аноду.
The kinetics of anodic processes on Pt/PtO and PbO2 anodes has been studied in water solutions of acetic acid. The addition of sulfuric acid has a catalytic effect in the electrochemical synthesis of peroxyacetic acid. The choice of promoters of peroxide-particles formation has been proved. I–, Cl–(current efficiency is 1.2–1.5 %) particles have been defined as the most effective for platinum anode and I–, F–(current efficiency is 0.50–0.55 %) have been defined as the most effective for lead-dioxide anode.
URI: https://ena.lpnu.ua/handle/ntb/55781
Copyright owner: © Національний університет “Львівська політехніка”, 2020
© Bilous T., Tulskaya A., Ryshchenko I., Chahine I., Bairachnyi V., 2020
URL for reference material: https://doi.org/10.1007/s11176-005-0378-8
https://doi.org/10.1016/j.molcata.2007.03.012
https://doi.org/10.1016/j.molcata.2008.01.003
https://doi.org/10.1016/S1004-9541(11)60078-5
https://doi.org/10.1016/S1004-9541(07)60087-1
https://doi.org/10.1016/j.elecom.2016.10.010
https://doi.org/10.1016/S1388-2481(03)00097-3
https://doi.org/10.1021/ie2009422
https://doi.org/10.3103/S106837551406009X
https://doi.org/10.1007/s10800-009-9792-7
https://doi.org/10.1007/s11175-005-0198-5
References (Ukraine): [1] Dul’neva L., Moskvin A.: Russ. J. Gen. Chem., 2005, 75, 1125. https://doi.org/10.1007/s11176-005-0378-8
[2] Zhao X., Zhang T., Zhou Y., Liu D.: J. Mol. Catal. A, 2007, 271, 246. https://doi.org/10.1016/j.molcata.2007.03.012
[3] Zhao X., Cheng K., Hao J., Liu D.: J. Mol. Catal. A, 2008, 284, 58. https://doi.org/10.1016/j.molcata.2008.01.003
[4] Zhao X., Zhang T., Zhou Y., Liu D.: Chinese J. Process Eng., 2008, 8, 35.
[5] Sun X., Zhao X., Du W., Liu D.: Chinese J. Chem. Eng., 2011, 19, 964. https://doi.org/10.1016/S1004-9541(11)60078-5
[6] Zhang T., Luo J., Chuang K., Zhong L.: Chinese J. Chem. Eng., 2007, 15, 320. https://doi.org/10.1016/S1004-9541(07)60087-1
[7] Moraleda I., Llanos J., Sáez C. et al.: Electrochem. Commun., 2016, 73, 1. https://doi.org/10.1016/j.elecom.2016.10.010
[8] Saha M., Denggerile A., Nishiki Y. et al.: Electrochem. Commun., 2003, 5, 445. https://doi.org/10.1016/S1388-2481(03)00097-3
[9] Cotillas S., Sánchez-Carretero A., Cañizares P. et al.: Ind. Eng. Chem. Res., 2011, 50, 10889. https://doi.org/10.1021/ie2009422
[10] Ruiz-Ruiz E., Meas Y., Ortega-Borges R., Baizabal J.: Surf. Eng. Appl. Electrochem., 2014, 50, 478. https://doi.org/10.3103/S106837551406009X
[11] Cañizares P., Sáez C., Sánchez-Carretero A., Rodrigo M.: J. Appl. Electrochem., 2009, 39, 2143. https://doi.org/10.1007/s10800-009-9792-7
[12] Bilous T., Tulsky G.: Kinetics of Anodic Processes in Acetic Acid Solutions. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Technical Electrochemistry. KNUTD, Kyiv 2016, 244-248.
[13] Bilous T., Tulskaya A., Matrunchyk O.: The Choice of Anode Material for the Electrochemical Synthesis of Peroxyacetic Acid. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Applied Electrochemistry. KNUTD, Kyiv 2017, 230-234.
[14] Bilous T., Tulsky G., Korohodska A., Podustov M.: Visnyk NTU “KhPI”, 2017, 48, 24.
[15] Khidirov Sh.: Russ. J. Electrochem., 1992, 2, 158.
[16] Khidirov Sh., Khibiev Kh.: Russ. J. Electrochem., 2005, 11,1176. https://doi.org/10.1007/s11175-005-0198-5
References (International): [1] Dul’neva L., Moskvin A., Russ. J. Gen. Chem., 2005, 75, 1125. https://doi.org/10.1007/s11176-005-0378-8
[2] Zhao X., Zhang T., Zhou Y., Liu D., J. Mol. Catal. A, 2007, 271, 246. https://doi.org/10.1016/j.molcata.2007.03.012
[3] Zhao X., Cheng K., Hao J., Liu D., J. Mol. Catal. A, 2008, 284, 58. https://doi.org/10.1016/j.molcata.2008.01.003
[4] Zhao X., Zhang T., Zhou Y., Liu D., Chinese J. Process Eng., 2008, 8, 35.
[5] Sun X., Zhao X., Du W., Liu D., Chinese J. Chem. Eng., 2011, 19, 964. https://doi.org/10.1016/S1004-9541(11)60078-5
[6] Zhang T., Luo J., Chuang K., Zhong L., Chinese J. Chem. Eng., 2007, 15, 320. https://doi.org/10.1016/S1004-9541(07)60087-1
[7] Moraleda I., Llanos J., Sáez C. et al., Electrochem. Commun., 2016, 73, 1. https://doi.org/10.1016/j.elecom.2016.10.010
[8] Saha M., Denggerile A., Nishiki Y. et al., Electrochem. Commun., 2003, 5, 445. https://doi.org/10.1016/S1388-2481(03)00097-3
[9] Cotillas S., Sánchez-Carretero A., Cañizares P. et al., Ind. Eng. Chem. Res., 2011, 50, 10889. https://doi.org/10.1021/ie2009422
[10] Ruiz-Ruiz E., Meas Y., Ortega-Borges R., Baizabal J., Surf. Eng. Appl. Electrochem., 2014, 50, 478. https://doi.org/10.3103/S106837551406009X
[11] Cañizares P., Sáez C., Sánchez-Carretero A., Rodrigo M., J. Appl. Electrochem., 2009, 39, 2143. https://doi.org/10.1007/s10800-009-9792-7
[12] Bilous T., Tulsky G., Kinetics of Anodic Processes in Acetic Acid Solutions. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Technical Electrochemistry. KNUTD, Kyiv 2016, 244-248.
[13] Bilous T., Tulskaya A., Matrunchyk O., The Choice of Anode Material for the Electrochemical Synthesis of Peroxyacetic Acid. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Applied Electrochemistry. KNUTD, Kyiv 2017, 230-234.
[14] Bilous T., Tulsky G., Korohodska A., Podustov M., Visnyk NTU "KhPI", 2017, 48, 24.
[15] Khidirov Sh., Russ. J. Electrochem., 1992, 2, 158.
[16] Khidirov Sh., Khibiev Kh., Russ. J. Electrochem., 2005, 11,1176. https://doi.org/10.1007/s11175-005-0198-5
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2

Files in This Item:
File Description SizeFormat 
2020v14n2_Bilous_T-Electrochemical_Synthesis_135-138.pdf328.26 kBAdobe PDFView/Open
2020v14n2_Bilous_T-Electrochemical_Synthesis_135-138__COVER.png523.33 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.