DC Field | Value | Language |
dc.contributor.author | Korchuganova, Olena | |
dc.contributor.author | Tantsiura, Emiliia | |
dc.contributor.author | Ozheredova, Marina | |
dc.contributor.author | Afonina, Iryna | |
dc.date.accessioned | 2020-12-23T13:23:56Z | - |
dc.date.available | 2020-12-23T13:23:56Z | - |
dc.date.created | 2020-01-24 | |
dc.date.issued | 2020-01-24 | |
dc.identifier.citation | The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts / Olena Korchuganova, Emiliia Tantsiura, Marina Ozheredova, Iryna Afonina // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 7–13. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55769 | - |
dc.description.abstract | Отримано та досліджено зразки безнатрійового нікель гідроксикарбонату для нанорозмірних каталізаторів. Розраховано співвідношення кристалічної води,
кількості гідроксиду нікелю та карбонату. Рентгенофазовим аналізом отриманого нікель оксиду визначено розмір кристаліту 12–13 нм. Зразки алюмо-нікелевих
каталізаторів, одержаних з безнатрійового нікель гідроксикарбонату, забезпечують вищу на 30 % питому поверхню у порівнянні з промисловими каталізаторами. | |
dc.description.abstract | The samples of non-sodium nickel hydroxycarbonate for nanosized catalysts have been obtained and investigated. The ratio of crystalline water, the amount of
nickel hydroxide and carbonate has been calculated. By the X-ray analysis of obtained nickel oxide the crystallite
size of 12–13 nm has been determined. The samples of catalysts provided a high specific surface. | |
dc.format.extent | 7-13 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (14), 2020 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2011.02.015 | |
dc.relation.uri | https://doi.org/10.1021/acsnano.5b00435 | |
dc.relation.uri | https://doi.org/10.1016/j.matlet.2013.06.060 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2017.01.047 | |
dc.relation.uri | https://doi.org/10.1021/am505056d | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2014.05.041 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2010.08.024 | |
dc.relation.uri | https://doi.org/10.1039/C6GC01955B | |
dc.relation.uri | https://doi.org/10.1007/s11663-007-9124-4 | |
dc.relation.uri | https://doi.org/10.1021/ie010312q | |
dc.relation.uri | https://doi.org/10.1016/j.jpcs.2006.01.006 | |
dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2016.08.081 | |
dc.relation.uri | https://doi.org/10.1002/crat.19750100910 | |
dc.relation.uri | https://doi.org/10.1016/j.materresbull.2012.03.051 | |
dc.relation.uri | https://doi.org/10.20998/2413-4295.2017.07.28 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2008.11.049 | |
dc.subject | нікель гідроксікарбонат | |
dc.subject | осадження | |
dc.subject | осаджувач | |
dc.subject | нікель оксид | |
dc.subject | каталізатори | |
dc.subject | nickel hydroxycarbonate | |
dc.subject | precipitation | |
dc.subject | precipitant | |
dc.subject | nickel oxide | |
dc.subject | catalysts | |
dc.title | The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts | |
dc.title.alternative | Безнатрійовий нікель гідроксокарбонат для нанорозмірних каталізаторів | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Korchuganova O., Tantsiura E., Ozheredova M., Afonina I., 2020 | |
dc.contributor.affiliation | Volodymyr Dahl East Ukrainian National University | |
dc.format.pages | 7 | |
dc.identifier.citationen | The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts / Olena Korchuganova, Emiliia Tantsiura, Marina Ozheredova, Iryna Afonina // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 7–13. | |
dc.identifier.doi | doi.org/10.23939/chcht14.01.007 | |
dc.relation.references | [1] Lan R., Tao S.: J. Power Sour., 2011, 196, 5021. https://doi.org/10.1016/j.jpowsour.2011.02.015 | |
dc.relation.references | [2] Nail B., Fields J., Zhao J. et al.: ACS Nano, 2015, 9, 5135. https://doi.org/10.1021/acsnano.5b00435 | |
dc.relation.references | [3] Hu L., Qu B., Chen L., Li Q.: Mater. Lett., 2013, 108, 92. https://doi.org/10.1016/j.matlet.2013.06.060 | |
dc.relation.references | [4] Aslam S., Subhan F., Yan Z. et al.: Chem. Eng. J., 2017, 315, 469. https://doi.org/10.1016/j.cej.2017.01.047 | |
dc.relation.references | [5] Zhu G., Xi C., Shen M. et al.: ACS Appl. Mater. Interface., 2014, 6, 17208. https://doi.org/10.1021/am505056d | |
dc.relation.references | [6] Koo K., Park M., Jung U. et al.: Int. J. Hydrogen Energ., 2014, 39, 10941. https://doi.org/10.1016/j.ijhydene.2014.05.041 | |
dc.relation.references | [7] Ribeiro N., Neto R., Moya S. et al.: Int. J. Hydrogen Energ., 2010, 35, 11725. https://doi.org/10.1016/j.ijhydene.2010.08.024 | |
dc.relation.references | [8] Ertl G., Knözinger H., Weitkamp J.: Handbook of Heterogeneous Catalysis. VCH VerlagsgesellschaftmbH, Weinheim 1997. | |
dc.relation.references | [9] Cui X., Yuan H., Junge K. et al.: Green Chem., 2017, 19, 305. https://doi.org/10.1039/C6GC01955B | |
dc.relation.references | [10] Rhamdhani M., Jak E., Hayes P.: Metallurg. Mater. Transact. B, 2008, 39, 218. https://doi.org/10.1007/s11663-007-9124-4 | |
dc.relation.references | [11] Guillard D., Lewis A.: Ind. Eng. Chem. Res., 2001, 40, 5564. https://doi.org/10.1021/ie010312q | |
dc.relation.references | [12] Taibi M., Ammar S., Jouini N., Fiévet F.: J. Phys. Chem. Solids, 2006, 67, 932. https://doi.org/10.1016/j.jpcs.2006.01.006 | |
dc.relation.references | [13] Ballesteros F., Salcedo A., Vilando A. et al.: Chemosphere, 2016, 164, 59. https://doi.org/10.1016/j.chemosphere.2016.08.081 | |
dc.relation.references | [14] Packter A., Uppaladinni S.: Kristall Und Techn., 1975, 10, 985. https://doi.org/10.1002/crat.19750100910 | |
dc.relation.references | [15] Beskov V., Dobrydnev S., Zamuruev O., Kapaev G.: Izv. Vysshykh Ucheb. Zaved., 2009, 52, 25. | |
dc.relation.references | [16] Kong L.-B., Deng L., Li X.-M. et al.: Mater. Res. Bull., 2012, 47, 1641. https://doi.org/10.1016/j.materresbull.2012.03.051 | |
dc.relation.references | [17] Solovov V., Nykolenko N., Kovalenko V. et al.:Visnyk Nats. Techn. Univ. Khrakiv. Polytech. Inst., 2017, 7, 199. https://doi.org/10.20998/2413-4295.2017.07.28 | |
dc.relation.references | [18] Liu C., Li Y.: J. Alloy. Compd., 2009, 478, 415. https://doi.org/10.1016/j.jallcom.2008.11.049 | |
dc.relation.referencesen | [1] Lan R., Tao S., J. Power Sour., 2011, 196, 5021. https://doi.org/10.1016/j.jpowsour.2011.02.015 | |
dc.relation.referencesen | [2] Nail B., Fields J., Zhao J. et al., ACS Nano, 2015, 9, 5135. https://doi.org/10.1021/acsnano.5b00435 | |
dc.relation.referencesen | [3] Hu L., Qu B., Chen L., Li Q., Mater. Lett., 2013, 108, 92. https://doi.org/10.1016/j.matlet.2013.06.060 | |
dc.relation.referencesen | [4] Aslam S., Subhan F., Yan Z. et al., Chem. Eng. J., 2017, 315, 469. https://doi.org/10.1016/j.cej.2017.01.047 | |
dc.relation.referencesen | [5] Zhu G., Xi C., Shen M. et al., ACS Appl. Mater. Interface., 2014, 6, 17208. https://doi.org/10.1021/am505056d | |
dc.relation.referencesen | [6] Koo K., Park M., Jung U. et al., Int. J. Hydrogen Energ., 2014, 39, 10941. https://doi.org/10.1016/j.ijhydene.2014.05.041 | |
dc.relation.referencesen | [7] Ribeiro N., Neto R., Moya S. et al., Int. J. Hydrogen Energ., 2010, 35, 11725. https://doi.org/10.1016/j.ijhydene.2010.08.024 | |
dc.relation.referencesen | [8] Ertl G., Knözinger H., Weitkamp J., Handbook of Heterogeneous Catalysis. VCH VerlagsgesellschaftmbH, Weinheim 1997. | |
dc.relation.referencesen | [9] Cui X., Yuan H., Junge K. et al., Green Chem., 2017, 19, 305. https://doi.org/10.1039/P.6GC01955B | |
dc.relation.referencesen | [10] Rhamdhani M., Jak E., Hayes P., Metallurg. Mater. Transact. B, 2008, 39, 218. https://doi.org/10.1007/s11663-007-9124-4 | |
dc.relation.referencesen | [11] Guillard D., Lewis A., Ind. Eng. Chem. Res., 2001, 40, 5564. https://doi.org/10.1021/ie010312q | |
dc.relation.referencesen | [12] Taibi M., Ammar S., Jouini N., Fiévet F., J. Phys. Chem. Solids, 2006, 67, 932. https://doi.org/10.1016/j.jpcs.2006.01.006 | |
dc.relation.referencesen | [13] Ballesteros F., Salcedo A., Vilando A. et al., Chemosphere, 2016, 164, 59. https://doi.org/10.1016/j.chemosphere.2016.08.081 | |
dc.relation.referencesen | [14] Packter A., Uppaladinni S., Kristall Und Techn., 1975, 10, 985. https://doi.org/10.1002/crat.19750100910 | |
dc.relation.referencesen | [15] Beskov V., Dobrydnev S., Zamuruev O., Kapaev G., Izv. Vysshykh Ucheb. Zaved., 2009, 52, 25. | |
dc.relation.referencesen | [16] Kong L.-B., Deng L., Li X.-M. et al., Mater. Res. Bull., 2012, 47, 1641. https://doi.org/10.1016/j.materresbull.2012.03.051 | |
dc.relation.referencesen | [17] Solovov V., Nykolenko N., Kovalenko V. et al.:Visnyk Nats. Techn. Univ. Khrakiv. Polytech. Inst., 2017, 7, 199. https://doi.org/10.20998/2413-4295.2017.07.28 | |
dc.relation.referencesen | [18] Liu C., Li Y., J. Alloy. Compd., 2009, 478, 415. https://doi.org/10.1016/j.jallcom.2008.11.049 | |
dc.citation.issue | 1 | |
dc.citation.spage | 7 | |
dc.citation.epage | 13 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 1
|