https://oldena.lpnu.ua/handle/ntb/55762
Title: | Starch Type Effect on Organoleptic, Thermogravimetric and X-ray Diffraction Indices of Edible Films and Coatings |
Other Titles: | Вплив різних видів крохмалю на органолептичні, термогравіметричні та рентгенофазові показники їстівних плівок і покриттів |
Authors: | Shulga, Oksana Chorna, Anastasia Shulga, Sergii |
Affiliation: | National University of Food Technologies |
Bibliographic description (Ukraine): | Shulga O. Starch Type Effect on Organoleptic, Thermogravimetric and X-ray Diffraction Indices of Edible Films and Coatings / Oksana Shulga, Anastasia Chorna, Sergii Shulga // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 81–87. |
Bibliographic description (International): | Shulga O. Starch Type Effect on Organoleptic, Thermogravimetric and X-ray Diffraction Indices of Edible Films and Coatings / Oksana Shulga, Anastasia Chorna, Sergii Shulga // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 81–87. |
Is part of: | Chemistry & Chemical Technology, 1 (14), 2020 |
Issue: | 1 |
Issue Date: | 24-Jan-2020 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
DOI: | doi.org/10.23939/chcht14.01.081 |
Keywords: | крохмаль термогравіметрія рентгеноструктурний аналіз їстівні плівки і покриття starch thermogravimetric X-ray diffraction edible films and coatings |
Number of pages: | 7 |
Page range: | 81-87 |
Start page: | 81 |
End page: | 87 |
Abstract: | Проведено органолептичний аналіз їстівних
плівок з картопляного крохмалю, хімічно модифікованого харчового крохмалю, виготовленого з високоамілозної кукурудзи,
вуглеводного полімеру із воскової кукурудзи та спеціального
високотемпературного декстрину, виготовленого з тапіокового
крохмалю. Встановлено, що найбільше подовження (108 %) та
міцність (47,6 МПа) мають плівки на основі картопляного
крохмалю. Показано, що модифіковані крохмалі, такі як декстрин та тапіоковий крохмаль, зберігають аморфну структуру
плівки краще за інших. Плівки з модифікованого крохмалю
містять більше кристалізаційної вологи, через відсутність
амілопектину. Отримані результати рекомендуються для
оптимізації виробництва харчових продуктів. The edible films from potato starch, chemically modified food starch refined from high amylose corn, carbohydrate polymer from a waxy corn and a special high-temperature dextrin refined from tapioca starch were studied according to organoleptic characteristics. The greatest elongation (108 %) and strength (47.6 MPa) were found to be with a film based on potato starch. The modified starches such as dextrin and tapioca starch retain amorphous of film structure better than others. The films from modified starch contain more crystallization moisture because there is no amylopectin in this starch. The obtained results are recommended to use for optimizing food production. |
URI: | https://ena.lpnu.ua/handle/ntb/55762 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2020 © Shulga O., Chorna A., Shulga S., 2020 |
URL for reference material: | https://doi.org/10.1155/2014/427259 https://doi.org/10.5937/FFR1501011S https://doi.org/10.4236/msa.2014.510072 https://doi.org/10.1016/S0144-8617(98)00123-4 https://doi.org/10.1016/j.foodchem.2010.11.154 https://doi.org/10.4236/fns.2014.53031 https://doi.org/10.1590/S1516-89132013000400014 https://doi.org/10.1016/j.foodchem.2011.10.090 https://doi.org/10.1016/j.foodhyd.2014.11.017 https://doi.org/10.1016/S0268-005X(01)00061-3 https://doi.org/10.3390/coatings6040041 https://doi.org/10.1080/10408390802145724 https://doi.org/10.1002/1521-379X(200108)53:8<356::AIDSTAR356>3.0.CO;2-7 https://doi.org/10.1016/S0924-2244(97)01051-0 https://doi.org/10.1016/j.polymdegradstab.2004.07.003 https://doi.org/10.1111/j.1365-2621.2000.tb16075.x https://doi.org/10.1002/pen.21783 https://doi.org/10.15587/1729-4061.2016.84511 https://doi.org/10.1002/9781444314724 https://doi.org/10.1021/ma00176a054 https://doi.org/10.1016/0022-2836(88)90144-1 https://doi.org/10.1093/acref/9780199204632.001.0001 |
References (Ukraine): | [1] Embuscado M., Huber K. (Eds.): Edible Films and Coatingsfor Food Applications. Springer, New York 2009. [2] Skurtys O. et al.: Food Hydrocolloid Edible Films and Coatings. [in:] Food Hydrocolloids: Characteristics, Properties and Structure. Nova Science Publishers, Inc. 2010, 41-80. [3] Shit S., Shah P.:J. Polym. 2014, 2014, 13. https://doi.org/10.1155/2014/427259 [4] Bourlieu-Lacanal C. et al.: Edible Moisture Barriers:Materials, Shaping Techniques and Promisesin Food Product Stabilization. [in:] Aguilera J. et al. Food Material Science: Principles and Practice. Springer, New York 2007, 547-577. [5] Suput D., Lazik V. et al.: Food Feed Res., 2015, 42, 11. https://doi.org/10.5937/FFR1501011S [6]Khan M.: Doctoral thesis, Wageningen University, Wageningen 2013. [7] Vartiainen J., Vähä-Nissi M., Harlin A.:Mater. Sci. Appl., 2014, 5,708. https://doi.org/10.4236/msa.2014.510072 [8] Garcia M., Pinotti A., Martino M., Zaritzky N.: Characterization of Starch and Composite Edible Films and Coatings. [in:] EmbuscadoM., Huber K. (Eds.): Edible Films and Coatingsfor Food Applications. Springer, New York 2009, 169-209. [9] Ahmad F et al.: Carbohyd. Polym., 1999, 38, 361. https://doi.org/10.1016/S0144-8617(98)00123-4 [10] Wang S., Sharp P., Copeland L.: Food Chem., 2011, 126, 1546. https://doi.org/10.1016/j.foodchem.2010.11.154 [11] Wasserman L. et al.: Food Nutrit. Sci., 2014, 3, 250. https://doi.org/10.4236/fns.2014.53031 [12] GaldeanoM. et al.: Braz. Arch. Biol. Techn., 2013, 56, 637. https://doi.org/10.1590/S1516-89132013000400014 [13] Zavareze E. et al.: Food Chem., 2012, 132, 344. https://doi.org/10.1016/j.foodchem.2011.10.090 [14] Gutiérrez T. et al.: Food Hydrocolloid., 2015, 45, 211. https://doi.org/10.1016/j.foodhyd.2014.11.017 [15] Sobral P. et al.: Food hydrocolloid., 2001, 15, 423. https://doi.org/10.1016/S0268-005X(01)00061-3 [16] Ramos M. et al.: Coatings, 2016, 6, 41. https://doi.org/10.3390/coatings6040041 [17] Bourlieu C. et al.: Crit. Rev. Food Sci., 2009, 49, 474. https://doi.org/10.1080/10408390802145724 [18] Petersen K., Nielsen P., Olsen M.: Starch, 2001, 8, 356. https://doi.org/10.1002/1521-379X(200108)53:8<356::AIDSTAR356>3.0.CO;2-7 [19] Miller K., Krochta J.: Trend. Food Sci. Technol., 1997, 7, 228. https://doi.org/10.1016/S0924-2244(97)01051-0 [20] Schmidt V., Giacomelli C., Soldi V.: Polym. Degrad. Stabil., 2005, 87, 25. https://doi.org/10.1016/j.polymdegradstab.2004.07.003 [21] Sothornvit R., Krochta J.:J. Food Sci., 2000, 65, 700. https://doi.org/10.1111/j.1365-2621.2000.tb16075.x [22] Polizos G., Tuncer E., SauersI., Vore K.: Polym. Eng. Sci., 2011, 51, 87. https://doi.org/10.1002/pen.21783 [23] Shulga O., Chorna A., Arsenieva L.: East.-Eur. J. Enterpr. Techn., 2016, 6, 36. https://doi.org/10.15587/1729-4061.2016.84511 [24] Annual Book of ASTM Standards Vol. 8.01. ASTM Intl., 2006. [25] Nechaev A., Traubenberg S., Kochetova A. et al.: Pischevaya Khimiya. GIORD, Sankt-Peterburg 2003. [26] Wawro D., Kazimierczak J.: Fibres & Textilesin Eastern Europe, 2008, 6, 106. [27] Imeson A. (Ed.): Food Stabilisers, Thickeners and Gelling Agents. Blackwell Publishing Ltd 2010. https://doi.org/10.1002/9781444314724 [28] Zobel H., Young S., Rocca L.: Cereal Chem., 1988, 65, 443. [29] Silagalze M., Kipiani A., Pkhakadze M. et al.: Ann. Agr. Sci., 2013, 11, 78. [30] Randeniya R., Jayasinghe J., Abeyrathne E.: Int. J. Res. Agr. Sci., 2016, 3, 255. [31] Imberty A. et al.: Macromolecules, 1987, 20, 2634. https://doi.org/10.1021/ma00176a054 [32] Imberty A. et al.:J. Mol. Biol., 1988, 21, 365. https://doi.org/10.1016/0022-2836(88)90144-1 [33] Shulga O. et al.: VII Mezhdunar. Nauchno-Tekhn. Konf., Mogilev 2009, Ch.2., 29. [34] Suderman N., Min I., Sarbon N.: Int. Food Res. J., 2016, 23, 1075. [35] Daintith J. (Ed.): A Dictionary of Chemistry (6 edn.), Oxford University Press 2008. https://doi.org/10.1093/acref/9780199204632.001.0001 |
References (International): | [1] Embuscado M., Huber K. (Eds.): Edible Films and Coatingsfor Food Applications. Springer, New York 2009. [2] Skurtys O. et al., Food Hydrocolloid Edible Films and Coatings. [in:] Food Hydrocolloids: Characteristics, Properties and Structure. Nova Science Publishers, Inc. 2010, 41-80. [3] Shit S., Shah P.:J. Polym. 2014, 2014, 13. https://doi.org/10.1155/2014/427259 [4] Bourlieu-Lacanal C. et al., Edible Moisture Barriers:Materials, Shaping Techniques and Promisesin Food Product Stabilization. [in:] Aguilera J. et al. Food Material Science: Principles and Practice. Springer, New York 2007, 547-577. [5] Suput D., Lazik V. et al., Food Feed Res., 2015, 42, 11. https://doi.org/10.5937/FFR1501011S [6]Khan M., Doctoral thesis, Wageningen University, Wageningen 2013. [7] Vartiainen J., Vähä-Nissi M., Harlin A.:Mater. Sci. Appl., 2014, 5,708. https://doi.org/10.4236/msa.2014.510072 [8] Garcia M., Pinotti A., Martino M., Zaritzky N., Characterization of Starch and Composite Edible Films and Coatings. [in:] EmbuscadoM., Huber K. (Eds.): Edible Films and Coatingsfor Food Applications. Springer, New York 2009, 169-209. [9] Ahmad F et al., Carbohyd. Polym., 1999, 38, 361. https://doi.org/10.1016/S0144-8617(98)00123-4 [10] Wang S., Sharp P., Copeland L., Food Chem., 2011, 126, 1546. https://doi.org/10.1016/j.foodchem.2010.11.154 [11] Wasserman L. et al., Food Nutrit. Sci., 2014, 3, 250. https://doi.org/10.4236/fns.2014.53031 [12] GaldeanoM. et al., Braz. Arch. Biol. Techn., 2013, 56, 637. https://doi.org/10.1590/S1516-89132013000400014 [13] Zavareze E. et al., Food Chem., 2012, 132, 344. https://doi.org/10.1016/j.foodchem.2011.10.090 [14] Gutiérrez T. et al., Food Hydrocolloid., 2015, 45, 211. https://doi.org/10.1016/j.foodhyd.2014.11.017 [15] Sobral P. et al., Food hydrocolloid., 2001, 15, 423. https://doi.org/10.1016/S0268-005X(01)00061-3 [16] Ramos M. et al., Coatings, 2016, 6, 41. https://doi.org/10.3390/coatings6040041 [17] Bourlieu C. et al., Crit. Rev. Food Sci., 2009, 49, 474. https://doi.org/10.1080/10408390802145724 [18] Petersen K., Nielsen P., Olsen M., Starch, 2001, 8, 356. https://doi.org/10.1002/1521-379X(200108)53:8<356::AIDSTAR356>3.0.CO;2-7 [19] Miller K., Krochta J., Trend. Food Sci. Technol., 1997, 7, 228. https://doi.org/10.1016/S0924-2244(97)01051-0 [20] Schmidt V., Giacomelli C., Soldi V., Polym. Degrad. Stabil., 2005, 87, 25. https://doi.org/10.1016/j.polymdegradstab.2004.07.003 [21] Sothornvit R., Krochta J.:J. Food Sci., 2000, 65, 700. https://doi.org/10.1111/j.1365-2621.2000.tb16075.x [22] Polizos G., Tuncer E., SauersI., Vore K., Polym. Eng. Sci., 2011, 51, 87. https://doi.org/10.1002/pen.21783 [23] Shulga O., Chorna A., Arsenieva L., East.-Eur. J. Enterpr. Techn., 2016, 6, 36. https://doi.org/10.15587/1729-4061.2016.84511 [24] Annual Book of ASTM Standards Vol. 8.01. ASTM Intl., 2006. [25] Nechaev A., Traubenberg S., Kochetova A. et al., Pischevaya Khimiya. GIORD, Sankt-Peterburg 2003. [26] Wawro D., Kazimierczak J., Fibres & Textilesin Eastern Europe, 2008, 6, 106. [27] Imeson A. (Ed.): Food Stabilisers, Thickeners and Gelling Agents. Blackwell Publishing Ltd 2010. https://doi.org/10.1002/9781444314724 [28] Zobel H., Young S., Rocca L., Cereal Chem., 1988, 65, 443. [29] Silagalze M., Kipiani A., Pkhakadze M. et al., Ann. Agr. Sci., 2013, 11, 78. [30] Randeniya R., Jayasinghe J., Abeyrathne E., Int. J. Res. Agr. Sci., 2016, 3, 255. [31] Imberty A. et al., Macromolecules, 1987, 20, 2634. https://doi.org/10.1021/ma00176a054 [32] Imberty A. et al.:J. Mol. Biol., 1988, 21, 365. https://doi.org/10.1016/0022-2836(88)90144-1 [33] Shulga O. et al., VII Mezhdunar. Nauchno-Tekhn. Konf., Mogilev 2009, Ch.2., 29. [34] Suderman N., Min I., Sarbon N., Int. Food Res. J., 2016, 23, 1075. [35] Daintith J. (Ed.): A Dictionary of Chemistry (6 edn.), Oxford University Press 2008. https://doi.org/10.1093/acref/9780199204632.001.0001 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2020v14n1_Shulga_O-Starch_Type_Effect_on_Organoleptic_81-87.pdf | 527.32 kB | Adobe PDF | View/Open | |
2020v14n1_Shulga_O-Starch_Type_Effect_on_Organoleptic_81-87__COVER.png | 514.91 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.