Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/55664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorВозняк, О. Т.
dc.contributor.authorАдамскі, М.
dc.contributor.authorКапало, П.
dc.contributor.authorДовбуш, О. М.
dc.contributor.authorСухолова, І. Є.
dc.contributor.authorVoznyak, Orest
dc.contributor.authorAdamski, Mariusz
dc.contributor.authorKapalo, Peter
dc.contributor.authorDovbush, Oleksandr
dc.contributor.authorSukholova, Iryna
dc.date.accessioned2020-12-13T12:37:23Z-
dc.date.available2020-12-13T12:37:23Z-
dc.date.created2020-02-10
dc.date.issued2020-02-10
dc.identifier.citationInvestigation of the return flow at the air distribution by swirl and flat laying air jets in small-sized premises / Orest Voznyak, Mariusz Adamski, Peter Kapalo, Oleksandr Dovbush, Iryna Sukholova // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 38–45.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55664-
dc.description.abstractНаведено результати експериментальних досліджень зворотного потоку при розподілі повітря плоскими струменями. Наведено графічні та аналітичні залежності. Результатами досліджень доказано високу ефективність запропонованої схеми розподілу повітря в технологічних малогабаритних приміщеннях. Метою роботи є вивчення характеру розповсюдження вихрових та настильних струменів у обмеженому просторі виробничого приміщення малої висоти з наявністю в ньому технологічного обладнання та обслуговуючого персоналу, виявлення закономірностей розвитку повітряного припливного струменя у зворотному потоці та обґрунтування методики розрахунку. Встановлено кількісний опис характеристик та закономірностей розвитку вихрових та плоских настильних стиснених струменів у зворотному потоці. Отримано розрахункові залежності для визначення параметрів вихрових та настильних плоских струменів у зворотному потоці. Обґрунтовано, що ефективність застосування вихрових та плоских настильних струменів для подачі повітря в робочу зону технологічних приміщень є високою. Отримані результати дають змогу обчислити початкову швидкість стисненого потоку вихрового та припливного плоских настильних струменів у невеликих за розмірами виробничих приміщеннях з наявністю технологічного обладнання та обслуговуючого персоналу та визначити геометричні параметри пристрою розподілу повітря. Застосування розподілу повітря за ефектом настилання вихрових та плоских повітряних струменів дозволяє значно підвищити критерії продуктивності розподілу повітря при подачі великої кількості повітря до технологічних приміщень і тим самим зменшити витрату матеріалів у вентиляційній системі.
dc.description.abstractIn this article the results of return flow at air distribution by flat laying jets experimental investigations are presented. The chart is composed, analytic equations are also obtained. By these results high efficiency of proposed air distribution scheme using in technological small-sized rooms is shown. The purpose of the work is to study the nature of the propagation of the swirl and flat flooring jets in a limited space of a production space of low height with the presence of technological equipment and maintenance personnel in it, to identify the patterns of development of the air tidal stream in the reverse flow and to justify the calculation methodology. The quantitative description of the characteristics and regularities of the development of the swirl and flat flooring compressed jets in the reverse flow is established. Calculation dependences were obtained for determining the parameters of the swirl and flat flooring compressed jets in the reverse flow. It is substantiated that the efficiency of the application of the swirl and flat flooring jets to supply air to the working area of the technological premises is high. The obtained results allow us to calculate the initial velocity of the swirl and tidal flat flooring compressed stream in a small-sized production rooms with the presence of technological equipment and service personnel and to determine the geometric parameters of the air distribution device. Application of air distribution with the use of the swirl and flat air jet laying effect allows to significantly increase the Air Distribution Performance Index criteria when supplying a big amount of air to the technological premises and thereby reducing the material consumption of the ventilation system.
dc.format.extent38-45
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (2), 2020
dc.subjectповітророзподіл
dc.subjectвентиляція
dc.subjectвитрата
dc.subjectшвидкість повітря
dc.subjectвихровий повітряний потік
dc.subjectстиснений струмінь
dc.subjectнастильний плоский повітряний струмінь
dc.subjectair distribution
dc.subjectventilation
dc.subjectflow rate
dc.subjectair velocity
dc.subjectswirl air jet
dc.subjectcompressed stream
dc.subjecttidal flat air jet
dc.titleInvestigation of the return flow at the air distribution by swirl and flat laying air jets in small-sized premises
dc.title.alternativeДослідження зворотного потоку при подачі повітря закрученими та плоскими настильними струминами в приміщеннях невеликого об’єму
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Voznyak O., Adamski M., Kapalo P., Dovbush O., Sukholova I., 2020
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationПолітехніка Бялостоцька
dc.contributor.affiliationКошицький технічний університет
dc.contributor.affiliationLvivPolytechnicNationalUniversity
dc.contributor.affiliationPolitechnika Białostocka
dc.contributor.affiliationTechnical University of Košice
dc.format.pages8
dc.identifier.citationenInvestigation of the return flow at the air distribution by swirl and flat laying air jets in small-sized premises / Orest Voznyak, Mariusz Adamski, Peter Kapalo, Oleksandr Dovbush, Iryna Sukholova // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 38–45.
dc.identifier.doidoi.org/10.23939/jtbp2020.01.038
dc.relation.referencesBin Zhao, Xianting Li, & Qisen Yanb Zhao. (2003). A simplified system for indoor airflow simulation.
dc.relation.referencesBuilding and Environment, Vol. 38, 543–552.
dc.relation.referencesChen, Q., & Srebric, J. (2001). Simplified diffuser boundary conditions for numerical room airflow models.
dc.relation.referencesFinal Report for ASHRAE RP-1009, Department of Architecture, Massachusetts Institute of Technology,
dc.relation.referencesCambridge, MA, 181 p.
dc.relation.referencesHolyoake. (2006). Diffuser Performance Data Sheet, Ceiling Fixed Pattern Radial Swirl Diffuser, Model CFP
dc.relation.referencesRadial Induction Swirl Diffuser.
dc.relation.referencesKapalo, P., Domnita, F., Bacotiu, C., & Podolak, M. (2018). The influence of occupants' body mass on
dc.relation.referencescarbon dioxide mass flow rate inside a university classroom – case study. International Journal of Environmental
dc.relation.referencesHealth Research. Vol. 28, No. 4, 432–447. ISSN 0960-3123. doi:10.1080/09603123.2018.1483010.
dc.relation.referencesKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019).
dc.relation.referencesInvestigation of CO2 production depending on physical activity of students. International Journal of Environmental
dc.relation.referencesHealth Research. Vol. 29, Issue 1, 31–44. ISSN: 09603123. doi:10.1080/09603123.2018.1506570.
dc.relation.referencesKapalo, P., & Siroczki, P. (2014). Calculating the intensity of ventilation in classrooms on the basis of
dc.relation.referencesmeasured concentrations of carbon dioxide in Slovakia – case study. International Journal of Ventilation. Vol. 13,
dc.relation.referencesNo. 3, 247–257. ISSN 1473-3315. WOS: 000348585900004.
dc.relation.referencesKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort
dc.relation.referencesmicroclimate in the classrooms under condition of the required air exchange, Eastern European Journal of
dc.relation.referencesEnterprise Technologies, Vol. 5/10 (95), 6–14.
dc.relation.referencesKapalo, P., Vilcekova, S., & Voznyak, O. (2014). Using experimental measurements the concentrations of
dc.relation.referencescarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions,
dc.relation.referencesVol. 39, 1789–1794. ISBN 978-88-95608-30-3; ISSN 2283-9216.
dc.relation.referencesKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referencesinside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35.
dc.relation.referencesSrebric, J., & Chen, Q. (2002). Simplified Numerical Models for Complex Air Supply Diffusers. HVAC&R
dc.relation.referencesResearch 8(3), 277–294.
dc.relation.referencesVoznyak, O., Korbut, V., Davydenko, B., & Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencestwo-flow device, Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesEnvironmental Engineering, Springer, Vol. 47, 526–533.
dc.relation.referencesGrimitlin, М. I. (2004). Air distribution in the rooms. Issue 3, adapted and supplemented, Мoscow: AVOK
dc.relation.referencesNorth-West (in Russian)..
dc.relation.referencesGumen, O. M., Dovhaliuk, V. B., & Міleikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencespremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid out
dc.relation.referenceson a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesDovhaliuk V. B., & Міleikovskyi V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencescalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue.
dc.relation.referencesTechnical University of Kosice. 148–152.
dc.relation.referencesenBin Zhao, Xianting Li, & Qisen Yanb Zhao. (2003). A simplified system for indoor airflow simulation.
dc.relation.referencesenBuilding and Environment, Vol. 38, 543–552.
dc.relation.referencesenChen, Q., & Srebric, J. (2001). Simplified diffuser boundary conditions for numerical room airflow models.
dc.relation.referencesenFinal Report for ASHRAE RP-1009, Department of Architecture, Massachusetts Institute of Technology,
dc.relation.referencesenCambridge, MA, 181 p.
dc.relation.referencesenHolyoake. (2006). Diffuser Performance Data Sheet, Ceiling Fixed Pattern Radial Swirl Diffuser, Model CFP
dc.relation.referencesenRadial Induction Swirl Diffuser.
dc.relation.referencesenKapalo, P., Domnita, F., Bacotiu, C., & Podolak, M. (2018). The influence of occupants' body mass on
dc.relation.referencesencarbon dioxide mass flow rate inside a university classroom – case study. International Journal of Environmental
dc.relation.referencesenHealth Research. Vol. 28, No. 4, 432–447. ISSN 0960-3123. doi:10.1080/09603123.2018.1483010.
dc.relation.referencesenKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019).
dc.relation.referencesenInvestigation of CO2 production depending on physical activity of students. International Journal of Environmental
dc.relation.referencesenHealth Research. Vol. 29, Issue 1, 31–44. ISSN: 09603123. doi:10.1080/09603123.2018.1506570.
dc.relation.referencesenKapalo, P., & Siroczki, P. (2014). Calculating the intensity of ventilation in classrooms on the basis of
dc.relation.referencesenmeasured concentrations of carbon dioxide in Slovakia – case study. International Journal of Ventilation. Vol. 13,
dc.relation.referencesenNo. 3, 247–257. ISSN 1473-3315. WOS: 000348585900004.
dc.relation.referencesenKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort
dc.relation.referencesenmicroclimate in the classrooms under condition of the required air exchange, Eastern European Journal of
dc.relation.referencesenEnterprise Technologies, Vol. 5/10 (95), 6–14.
dc.relation.referencesenKapalo, P., Vilcekova, S., & Voznyak, O. (2014). Using experimental measurements the concentrations of
dc.relation.referencesencarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions,
dc.relation.referencesenVol. 39, 1789–1794. ISBN 978-88-95608-30-3; ISSN 2283-9216.
dc.relation.referencesenKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referenceseninside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesenInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35.
dc.relation.referencesenSrebric, J., & Chen, Q. (2002). Simplified Numerical Models for Complex Air Supply Diffusers. HVAC&R
dc.relation.referencesenResearch 8(3), 277–294.
dc.relation.referencesenVoznyak, O., Korbut, V., Davydenko, B., & Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencesentwo-flow device, Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesenEnvironmental Engineering, Springer, Vol. 47, 526–533.
dc.relation.referencesenGrimitlin, M. I. (2004). Air distribution in the rooms. Issue 3, adapted and supplemented, Moscow: AVOK
dc.relation.referencesenNorth-West (in Russian)..
dc.relation.referencesenGumen, O. M., Dovhaliuk, V. B., & Mileikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesenof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesenLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencesenpremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid out
dc.relation.referencesenon a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesenCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesenDovhaliuk V. B., & Mileikovskyi V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencesencalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesenVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesenIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue.
dc.relation.referencesenTechnical University of Kosice. 148–152.
dc.citation.issue1
dc.citation.spage38
dc.citation.epage45
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Theory and Building Practice. – 2020. – Vol. 2, No. 1

Files in This Item:
File Description SizeFormat 
2020v2n1_Voznyak_O-Investigation_of_the_return_38-45.pdf461.77 kBAdobe PDFView/Open
2020v2n1_Voznyak_O-Investigation_of_the_return_38-45__COVER.png411.14 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.