DC Field | Value | Language |
dc.contributor.author | Шаповал, С. П. | |
dc.contributor.author | Желих, В. М. | |
dc.contributor.author | Венгрин, І. І. | |
dc.contributor.author | Миронюк, Х. В. | |
dc.contributor.author | Генсецький, М. П. | |
dc.contributor.author | Shapoval, Stepan | |
dc.contributor.author | Zhelykh, Vasyl | |
dc.contributor.author | Venhryn, Iryna | |
dc.contributor.author | Myroniuk, Khrystyna | |
dc.contributor.author | Gensetskyi, Mykola | |
dc.date.accessioned | 2020-12-13T12:37:22Z | - |
dc.date.available | 2020-12-13T12:37:22Z | - |
dc.date.created | 2020-02-10 | |
dc.date.issued | 2020-02-10 | |
dc.identifier.citation | Examination of the thermal efficiency of the solar collector integrated into the light transparent building facade / Stepan Shapoval, Vasyl Zhelykh, Iryna Venhryn, Khrystyna Myroniuk, Mykola Gensetskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 30–37. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55663 | - |
dc.description.abstract | Описано перспективність розвитку напрямку сонячної енергетики в Україні. Інтерес до
ефективного використання сонячного випромінювання сонячними колекторами обґрунтовує
актуальність і доцільність досліджень з проблеми використання в них такої енергії. Проаналізовано,
що сонячна енергетика залишається найперспективнішим напрямком для генерації
теплової енергії внаслідок: встановленого обсягу надходження сонячного випромінювання на
територію України та зношеність технологічного обладнання, що працють на традиційному
органічному паливі. Окрім цього, враховуючи тенденцію побудови скляних фасадів у галузі
будівництва, в праці запропонованого сонячний колектор інтегрований в світлопрозорий фасад
будівлі з метою економії площі, на яку встановлюються установки сонячних колекторів та
збереження викопних видів палива. За інтенсивності імітованого сонячного випромінювання 900 Вт/м2,
що потрапляло на поглинаючу поверхню сонячного колектора, температура на
виході із сонячного колектора досягала 22,9 ºС. Порівнюючи зміни миттєвої потужності
сонячного колектора Qск, Вт/м2 встановлено, що на 60 хв експерименту за інтенсивності
імітованого сонячного випромінювання 900 Вт/м2, вона була більшою за 250 Вт/м2. Коефіцієнт
корисної дії експериментального сонячного колектора в режимі прямотечії теплоносія в
системі за інтенсивності імітованого сонячного випромінювання 900 Вт/м2 досягав ≈33 %.
Встановлено, що запропонований сонячний колектор за інтенсивностей, що відповідатимуть
потужності сонячного випромінювання в літній період року, в рeжимі прямотечії теплоносія
через конструкцію соячного колектора є ефективним джерелом низькопотенційного тепло-
постачання. Перспективним напрямом подальших досліджень залишається встановлення ефективності
такого колектора за інших інтенсивностей імітованого сонячного випромінювання та
за інших режимів роботи теплоносія через конструкцію сонячного колектора в системі сонячного теплопостачання. | |
dc.description.abstract | The work describes the prospects for the development of solar energy in Ukraine. Interest in the
effective use of solar radiation by solar collectors justifies the relevance and expediency of research on
the problem of using such energy in them. It is analyzed that solar energy remains a promising
direction for generating thermal energy due to: the increased volume of solar radiation entering the
territory of Ukraine and the wear or tear of technological equipment running on traditional organic
fuel. Also, if taking into account the trend of building glass facades in the field of construction, in the
work proposed solar collector which was integrated into the light transparent facade of the building.
The solar collector model was developed for the purpose of in order to save space where solar
collectors should be installed and to save fossil fuels. The temperature at the outlet of the solar
collector reached 22.9 °C according to the intensity of the simulated solar radiation of 900 W/m2,
which fell on the absorbing surface of the solar collector. Comparing the changes in the instantaneous
power of the solar collector QSC, W/m2, it was found that at 60 minutes of the experiment was greater
than 250 W/m2 under the intensity of the simulated solar radiation of 900W/m2. The efficiency of the
experimental solar collector reached ≈33% in the direct heat carrier mode in the system according to
the intensity of the simulated solar radiation. It was established, that the proposed solar collector in the
mode of direct heat carrier was the effective source of low potential heat supply under intensities
which could correspond to the power of solar radiation at summer time of the year. The promising
direction for further research will be the efficiency establishing of the collector under simulated
intensities of the solar radiation and other modes of operation of the heat carrier. | |
dc.format.extent | 30-37 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 1 (2), 2020 | |
dc.subject | сонячне випромінювання | |
dc.subject | сонячний колектор | |
dc.subject | світлопрозорий фасад | |
dc.subject | solar radiation | |
dc.subject | solar collector | |
dc.subject | light transparent facade | |
dc.title | Examination of the thermal efficiency of the solar collector integrated into the light transparent building facade | |
dc.title.alternative | Визначення теплової ефективності сонячного колектора інтегрованого в світлопрозорий фасад будівлі | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Shapoval S., Zhelykh V., Venhryn I., Myroniuk Kh., Gensetskyi M., 2020 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 8 | |
dc.identifier.citationen | Examination of the thermal efficiency of the solar collector integrated into the light transparent building facade / Stepan Shapoval, Vasyl Zhelykh, Iryna Venhryn, Khrystyna Myroniuk, Mykola Gensetskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 30–37. | |
dc.identifier.doi | doi.org/10.23939/jtbp2020.01.030 | |
dc.relation.references | Zolotko, K. (1998) Development of calculation methods and selection of rational parameters of heat supply | |
dc.relation.references | systems with flat solar collectors. (Doctoral dissertation), 207. (in Russian) | |
dc.relation.references | Mysak, Y., Vozniak, О., Datsko, О., Shapoval, S. (2014) Solar energy: theory and practice. Lviv Politechnic | |
dc.relation.references | National University, 340. (in Ukrainian) | |
dc.relation.references | Kutnyi, B., Osipa, M. (2014). Results of experimental studies of the solar collector. Collection of scientific | |
dc.relation.references | papers, series: industrial engineering, construction of Poltava national technical University named after Yuri | |
dc.relation.references | Kondratyuk, 1(40), 6. (in Ukrainian) | |
dc.relation.references | Salvi, Swapnil & Bhalla, Vishal & Taylor, Robert & Khullar, Vikrant & Otanicar, Todd & Phelan, Patrick & | |
dc.relation.references | Tyagi, Himanshu. (2018). Technological Advances to Maximize Solar Collector Energy Output: A Review. Journal | |
dc.relation.references | of Electronic Packaging, 140. (in English) | |
dc.relation.references | Vozniak, О., Shapoval, S., Pona, O., Venhryn, I. (2014) Influence of the direction and speed of the air flow | |
dc.relation.references | on the operation of the solar collector without a transparent coating. Construction and technogenic safety, 50, 49–52. | |
dc.relation.references | (in Ukrainian) | |
dc.relation.references | Pasichnyk, P., Pryimak, O. (2013) Analysis of the properties of textile materials for the absorbing element of | |
dc.relation.references | the solar energy collector. Energy efficiency in construction and architecture, 4, 201–204. (in Ukrainian) | |
dc.relation.references | Syvoraksha, V., Zolotko, K., Markov, V., Petrov, B. (2001) Influence of the heat-sensing element design on | |
dc.relation.references | the efficiency of the solar collector. Ecotechnologies and resource conservation, 2, 70–73. (in Russian) | |
dc.relation.references | Zhelykh, V., Piznak, B. (2013) Comparative analysis of calculated models of polymer solar collectors. | |
dc.relation.references | Energy efficiency in construction and architecture, 4, 109–113. (in Ukrainian) | |
dc.relation.references | Shapoval, S., Zhelykh, V., Venhryn, I., & Kozak, K. (2020). Simulation of thermal processes in the solar | |
dc.relation.references | collector which is combined with external fence of an energy efficient house. Proceedings of CEE 2019, Advances | |
dc.relation.references | in Resource-saving Technologies and Materials in Civil and Environmental Engineering, 510–517. (in English) | |
dc.relation.references | Filipowicz, M., Przenzak, E., Figaj, R. D. (2019). Building solar cooling systems based on thermally driven | |
dc.relation.references | chillers as an alternative approach to classic electrical cooling systems. Construction of optimized energy potential, (1), 67–76. (in English) | |
dc.relation.references | Khotin, S. (2001) Development and research of a concentrating collector with vacuumed heat sinks. | |
dc.relation.references | (Doctoral dissertation). (in Ukrainian) | |
dc.relation.references | Buonomano, A., Calise, F., Palombo, A. (2018). Solar heating and cooling systems by ab-sorption and | |
dc.relation.references | adsorption chillers driven by stationary and concentrating photovolta-ic/thermal solar collectors: Modelling and | |
dc.relation.references | simulation. Renewable and Sustainable Energy Reviews 82 (2), 1874–1908. (in English) | |
dc.relation.references | Lamnatou, C., Mondol, J., Chemisana, D., Maurer C. (2015). Modelling and simulation of Building- | |
dc.relation.references | Integrated solar thermal systems: Behaviour of the system. Renewable and Sus-tainable Energy Reviews 45, 36–51. | |
dc.relation.references | (in English) | |
dc.relation.references | Shapoval, S., Shapoval, P., Zhelykh, V., Pona, O., Spodyniuk, N., Gulai, B., Myroniuk, K. (2017). | |
dc.relation.references | Ecological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry and | |
dc.relation.references | Chemical Technology, 11(4), 503–508. (in English) | |
dc.relation.references | Venhryn, I. (2019) Research of solar collectors integrated into the construction of the glass facade of a | |
dc.relation.references | building / construction: necessity and features. Theory and Building Practice, 38–46. (in Ukrainian) | |
dc.relation.referencesen | Zolotko, K. (1998) Development of calculation methods and selection of rational parameters of heat supply | |
dc.relation.referencesen | systems with flat solar collectors. (Doctoral dissertation), 207. (in Russian) | |
dc.relation.referencesen | Mysak, Y., Vozniak, O., Datsko, O., Shapoval, S. (2014) Solar energy: theory and practice. Lviv Politechnic | |
dc.relation.referencesen | National University, 340. (in Ukrainian) | |
dc.relation.referencesen | Kutnyi, B., Osipa, M. (2014). Results of experimental studies of the solar collector. Collection of scientific | |
dc.relation.referencesen | papers, series: industrial engineering, construction of Poltava national technical University named after Yuri | |
dc.relation.referencesen | Kondratyuk, 1(40), 6. (in Ukrainian) | |
dc.relation.referencesen | Salvi, Swapnil & Bhalla, Vishal & Taylor, Robert & Khullar, Vikrant & Otanicar, Todd & Phelan, Patrick & | |
dc.relation.referencesen | Tyagi, Himanshu. (2018). Technological Advances to Maximize Solar Collector Energy Output: A Review. Journal | |
dc.relation.referencesen | of Electronic Packaging, 140. (in English) | |
dc.relation.referencesen | Vozniak, O., Shapoval, S., Pona, O., Venhryn, I. (2014) Influence of the direction and speed of the air flow | |
dc.relation.referencesen | on the operation of the solar collector without a transparent coating. Construction and technogenic safety, 50, 49–52. | |
dc.relation.referencesen | (in Ukrainian) | |
dc.relation.referencesen | Pasichnyk, P., Pryimak, O. (2013) Analysis of the properties of textile materials for the absorbing element of | |
dc.relation.referencesen | the solar energy collector. Energy efficiency in construction and architecture, 4, 201–204. (in Ukrainian) | |
dc.relation.referencesen | Syvoraksha, V., Zolotko, K., Markov, V., Petrov, B. (2001) Influence of the heat-sensing element design on | |
dc.relation.referencesen | the efficiency of the solar collector. Ecotechnologies and resource conservation, 2, 70–73. (in Russian) | |
dc.relation.referencesen | Zhelykh, V., Piznak, B. (2013) Comparative analysis of calculated models of polymer solar collectors. | |
dc.relation.referencesen | Energy efficiency in construction and architecture, 4, 109–113. (in Ukrainian) | |
dc.relation.referencesen | Shapoval, S., Zhelykh, V., Venhryn, I., & Kozak, K. (2020). Simulation of thermal processes in the solar | |
dc.relation.referencesen | collector which is combined with external fence of an energy efficient house. Proceedings of CEE 2019, Advances | |
dc.relation.referencesen | in Resource-saving Technologies and Materials in Civil and Environmental Engineering, 510–517. (in English) | |
dc.relation.referencesen | Filipowicz, M., Przenzak, E., Figaj, R. D. (2019). Building solar cooling systems based on thermally driven | |
dc.relation.referencesen | chillers as an alternative approach to classic electrical cooling systems. Construction of optimized energy potential, (1), 67–76. (in English) | |
dc.relation.referencesen | Khotin, S. (2001) Development and research of a concentrating collector with vacuumed heat sinks. | |
dc.relation.referencesen | (Doctoral dissertation). (in Ukrainian) | |
dc.relation.referencesen | Buonomano, A., Calise, F., Palombo, A. (2018). Solar heating and cooling systems by ab-sorption and | |
dc.relation.referencesen | adsorption chillers driven by stationary and concentrating photovolta-ic/thermal solar collectors: Modelling and | |
dc.relation.referencesen | simulation. Renewable and Sustainable Energy Reviews 82 (2), 1874–1908. (in English) | |
dc.relation.referencesen | Lamnatou, C., Mondol, J., Chemisana, D., Maurer C. (2015). Modelling and simulation of Building- | |
dc.relation.referencesen | Integrated solar thermal systems: Behaviour of the system. Renewable and Sus-tainable Energy Reviews 45, 36–51. | |
dc.relation.referencesen | (in English) | |
dc.relation.referencesen | Shapoval, S., Shapoval, P., Zhelykh, V., Pona, O., Spodyniuk, N., Gulai, B., Myroniuk, K. (2017). | |
dc.relation.referencesen | Ecological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry and | |
dc.relation.referencesen | Chemical Technology, 11(4), 503–508. (in English) | |
dc.relation.referencesen | Venhryn, I. (2019) Research of solar collectors integrated into the construction of the glass facade of a | |
dc.relation.referencesen | building, construction: necessity and features. Theory and Building Practice, 38–46. (in Ukrainian) | |
dc.citation.issue | 1 | |
dc.citation.spage | 30 | |
dc.citation.epage | 37 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Theory and Building Practice. – 2020. – Vol. 2, No. 1
|