Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52548
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGorokhovatskyi, Volodymyr
dc.contributor.authorPutyatin, Yevgenyi
dc.contributor.authorGorokhovatskyi, Oleksii
dc.contributor.authorPeredrii, Olena
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:06:09Z-
dc.date.available2020-06-19T12:06:09Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationQuantization of the Space of Structural Image Features as a Way to Increase Recognition Performance / Volodymyr Gorokhovatskyi, Yevgenyi Putyatin, Oleksii Gorokhovatskyi, Olena Peredrii // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 464–467. — (Machine Vision and Pattern Recognition).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52548-
dc.description.abstractA modification of the structural image recognition method in computer vision systems is proposed. In order to improve the performance of recognition, quantization (clustering) is applied in the space of characteristic features that form the pattern of the object. Due to the transformation of structural objects descriptions from a set representation to a vector form, the amount of computation is reduced tens of times. The results of experiments that confirmed the effectiveness and increase of decision-making process are shown.
dc.format.extent464-467
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.relation.urihttps://www.researchgate.net/publication/292157133_
dc.relation.urihttp://opencv.org
dc.subjectcomputer vision
dc.subjectstructural recognition methods
dc.subjectset of characteristic features
dc.subjectdescriptor
dc.subjectquantization
dc.subjectcompetitive learning
dc.subjectrecognition performance
dc.subjectnoise immunity
dc.titleQuantization of the Space of Structural Image Features as a Way to Increase Recognition Performance
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationKharkiv National University of Radio Electronics
dc.contributor.affiliationSimon Kuznets Kharkiv National University of Economics
dc.format.pages4
dc.identifier.citationenQuantization of the Space of Structural Image Features as a Way to Increase Recognition Performance / Volodymyr Gorokhovatskyi, Yevgenyi Putyatin, Oleksii Gorokhovatskyi, Olena Peredrii // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 464–467. — (Machine Vision and Pattern Recognition).
dc.relation.references[1] V. Gorokhovatsky, “Structural analysis and intellectual data processing in computer vision,” SMIT, Kharkov, 2014. (in Russian).
dc.relation.references[2] H. Bay, T. Tuytelaars and L.Van Gool, “Surf: Speeded up robust features,” in: 9th European Conference on Computer Vision, Graz, Austria, pp. 404– 417, May 7-13, 2006.
dc.relation.references[3] V. Gorokhovatsky, “Efficient Estimation of Visual Object Relevance during Recognition through their Vector Descriptions,” in: Telecommunications and Radio Engineering, Vol. 75, No 14, pp. 1271–1283, 2016.
dc.relation.references[4] V. Gorokhovatsky, A. Gorokhovatsky and A.Berestovsky, “Intellectual Data Processing and Self-Organization of Structural Features at Recognition of Visual Objects,” in: Telecommunications and Radio Engineering, Vol. 75, No 2, pp. 155–168, 2016.
dc.relation.references[5] L. Shapiro and G. Stockman, “Computer vision,” Prentice Hall., 2001.
dc.relation.references[6] T. Kohonen, “Self-Organizing Maps,” Springer Science & Business Media, 2001.
dc.relation.references[7] E. Karami, S. Prasad and M. Shehata, “Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images,” [Online]. Available: https://www.researchgate.net/publication/292157133_[July 30, 2017].
dc.relation.references[8] S. Osovski, “Sieci neuronovane do przetwarzania informacji,” in: Oficyna Wydawnicza Politechniki Warszawskiej, 2000.
dc.relation.references[9] V.Gorokhovatsky, Y. Putyatin and V. Stolyarov, “Research of Effectivenss of Structural Image Classification Methods using Cluster Data Model,” in: Radio Electronics, Computer Science, Control, vol. 3 (42), pp. 78–85, 2017.
dc.relation.references[10] O. Gorokhovatskyi, “Neocognitron As a Tool for Optical Marks Recognition,” in: First IEEE International Conference on DataStream Mining & Processing (DSMP), Lviv, Ukraine, pp. 169 – 172, 23-27August 2016.
dc.relation.references[11] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: an efficient alternative to SIFT or SURF,” in: IEEE International Conference on Computer Vision (ICCV), pp. 2564 – 2571, 2011.
dc.relation.references[12] OpenCV Library [Online]. Available: http://opencv.org [November 15, 2017]
dc.relation.references[13] M. Sonka, V. Hlavac and R. Boyle, “Image Processing, Analysis and Machine Vision,” Thomson, 2008.
dc.relation.references[14] R. Szeliski, “Computer Vision: Algorithms and Applications,” Springer, 2010.
dc.relation.references[15] Y. Amit, “2D Object Detection and Recognition: models, algorithms and networks,” The MIT Press, 2002.
dc.relation.referencesen[1] V. Gorokhovatsky, "Structural analysis and intellectual data processing in computer vision," SMIT, Kharkov, 2014. (in Russian).
dc.relation.referencesen[2] H. Bay, T. Tuytelaars and L.Van Gool, "Surf: Speeded up robust features," in: 9th European Conference on Computer Vision, Graz, Austria, pp. 404– 417, May 7-13, 2006.
dc.relation.referencesen[3] V. Gorokhovatsky, "Efficient Estimation of Visual Object Relevance during Recognition through their Vector Descriptions," in: Telecommunications and Radio Engineering, Vol. 75, No 14, pp. 1271–1283, 2016.
dc.relation.referencesen[4] V. Gorokhovatsky, A. Gorokhovatsky and A.Berestovsky, "Intellectual Data Processing and Self-Organization of Structural Features at Recognition of Visual Objects," in: Telecommunications and Radio Engineering, Vol. 75, No 2, pp. 155–168, 2016.
dc.relation.referencesen[5] L. Shapiro and G. Stockman, "Computer vision," Prentice Hall., 2001.
dc.relation.referencesen[6] T. Kohonen, "Self-Organizing Maps," Springer Science & Business Media, 2001.
dc.relation.referencesen[7] E. Karami, S. Prasad and M. Shehata, "Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images," [Online]. Available: https://www.researchgate.net/publication/292157133_[July 30, 2017].
dc.relation.referencesen[8] S. Osovski, "Sieci neuronovane do przetwarzania informacji," in: Oficyna Wydawnicza Politechniki Warszawskiej, 2000.
dc.relation.referencesen[9] V.Gorokhovatsky, Y. Putyatin and V. Stolyarov, "Research of Effectivenss of Structural Image Classification Methods using Cluster Data Model," in: Radio Electronics, Computer Science, Control, vol. 3 (42), pp. 78–85, 2017.
dc.relation.referencesen[10] O. Gorokhovatskyi, "Neocognitron As a Tool for Optical Marks Recognition," in: First IEEE International Conference on DataStream Mining & Processing (DSMP), Lviv, Ukraine, pp. 169 – 172, 23-27August 2016.
dc.relation.referencesen[11] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: an efficient alternative to SIFT or SURF," in: IEEE International Conference on Computer Vision (ICCV), pp. 2564 – 2571, 2011.
dc.relation.referencesen[12] OpenCV Library [Online]. Available: http://opencv.org [November 15, 2017]
dc.relation.referencesen[13] M. Sonka, V. Hlavac and R. Boyle, "Image Processing, Analysis and Machine Vision," Thomson, 2008.
dc.relation.referencesen[14] R. Szeliski, "Computer Vision: Algorithms and Applications," Springer, 2010.
dc.relation.referencesen[15] Y. Amit, "2D Object Detection and Recognition: models, algorithms and networks," The MIT Press, 2002.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage464
dc.citation.epage467
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Gorokhovatskyi_V-Quantization_of_464-467.pdf166.35 kBAdobe PDFView/Open
2018_Gorokhovatskyi_V-Quantization_of_464-467__COVER.png533.59 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.