Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52541
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsmots, Ivan
dc.contributor.authorSkorokhoda, Oleksa
dc.contributor.authorTsymbal, Yurii
dc.contributor.authorTesluyk, Taras
dc.contributor.authorKhavalko, Viktor
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:06:01Z-
dc.date.available2020-06-19T12:06:01Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationNeural-Like Means for Data Streams Encryption and Decryption in Real Time / Ivan Tsmots, Oleksa Skorokhoda, Yurii Tsymbal, Taras Tesluyk, Viktor Khavalko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 438–443. — (Hybrid Systems of Computational Intelligence).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52541-
dc.description.abstractThe “model of successive geometric transformations” paradigm has been adapted for the implementation of parallel-streaming neural network encryption-decryption of data in real time. A model and structure of a parallel-streaming neural-like element for the mode have been developed.
dc.format.extent438-443
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.relation.urihttp://www.cs.utsa.edu/~bylander/cs4793/learnsc32.pdf
dc.subjectintensive data stream
dc.subjectneural networks
dc.subjectgeometric transformations model
dc.titleNeural-Like Means for Data Streams Encryption and Decryption in Real Time
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages6
dc.identifier.citationenNeural-Like Means for Data Streams Encryption and Decryption in Real Time / Ivan Tsmots, Oleksa Skorokhoda, Yurii Tsymbal, Taras Tesluyk, Viktor Khavalko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 438–443. — (Hybrid Systems of Computational Intelligence).
dc.relation.references[1] A. V. Palagin, and Yu. S. Yakovlev, System integration of computer equipment. Vinnytsia: UNIVERSUM-Vinnytsia, 2005. (in Russian)
dc.relation.references[2] V. P. Gribachev, “Element base of hardware implementations of neural networks,” in Components and technologies, no. 8, 2006. (in Russian)
dc.relation.references[3] S. Haykin, Neural networks and learning machines, 3rd ed. New York: Prentice Hall, 2009.
dc.relation.references[4] Ye. V. Bodyanskiy and O. G. Rudenko, Artificial neural networks: architectures, learning, applications. Kharkiv: TELETEH, 2004. (in Russian)
dc.relation.references[5] W. S. McCulloch, and W. Pitts, “A logical calculus of the ideas immanent in nervous activity” in The Bulletin of Mathematical Biophysics, vol. 5, iss. 4, pp. 115–133, 1943.
dc.relation.references[6] ADALINE (Adaptive linear) [Electronic Resource]: http://www.cs.utsa.edu/~bylander/cs4793/learnsc32.pdf
dc.relation.references[7] K. Fukushima, “Cognitron: A self-organizing multilayered neural network” in Biological cybernetics, vol. 20, iss. 3-4, pp. 121–136, 1975.
dc.relation.references[8] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities” in Proceedings of the national academy of sciences, vol. 79, iss. 8, pp. 2554–2558, 1982.
dc.relation.references[9] J. Cao, and J. Liang, “Boundedness and stability for Cohen–Grossberg neural network with time-varying delays,” in Journal of Mathematical Analysis and Applications, vol. 296, iss. 2, pp. 665–685, 2004.
dc.relation.references[10] Yu. M. Rashkevich, R. O. Tkachenko, I. G. Tsmots, and D. D. Peleshko, Non-linear methods, algorithms and structures for processing of signals and images in real time: monograph. Lviv: Lviv Polytechnic Publishing House, 2014. (in Ukrainian)
dc.relation.references[11] I. G. Tsmots, O. V. Skorokhoda, and B. I. Balych, “Model and VLSI structures of the parallel-vertical type formal neuron using bus multiplexing,” in Modeling and Information Technologies, Digest of Scientific Papers of the G.E. Puhov Institute of Modeling Problems in the Energy, Lviv, vol. 67, pp. 160-166, 2013. (in Ukrainian)
dc.relation.references[12] I. G. Tsmots, O. V. Skorokhoda, and V. B. Krasovskii, “Models and VLSI structures of a parallel-vertical type formal neuron combining the processes of data incoming and processing,” in Modeling and Information Technologies, Digest of Scientific Papers of the G.E. Puhov Institute of Modeling Problems in the Energy, Lviv, vol. 70, pp. 137-145, 2013. (in Ukrainian)
dc.relation.references[13] I. G. Tsmots, O. V. Skorokhoda, and B. I. Balych, “Model and VLSI structure of a parallel-vertical type formal neuron with tabular macropartial results,” in Modeling and Information Technologies, Digest of Scientific Papers of the G.E. Puhov Institute of Modeling Problems in the Energy, Lviv, vol. 73, pp. 133-138, 2014. (in Ukrainian)
dc.relation.references[14] I. G. Tsmots, O. V. Skorokhoda, and V. M. Tesliuk, A device for calculating scalar product. Patent № 101922 Ukraine, G06F 7/38. Bul. no. 9, 2013. (in Ukrainian)
dc.relation.references[15] I. Tsmots, O. Skorokhoda, V. Rabyk, and I. Ignatyev, “Basic verticalparallel real time neural network components,” XIIth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT), Lviv, pp. 344–347, 2017.
dc.relation.references[16] I. Izonin, R. Tkachenko, D. Peleshko, T. Rak, and D. Batyuk, “Learningbased image super-resolution using weight coefficients of synaptic connections,” Xth International Scientific and Technical Conference “Computer Sciences and Information Technologies” (CSIT), Lviv, pp. 25-29, 2015.
dc.relation.references[17] Y. Tsymbal, and R. Tkachenko, “A digital watermarking scheme based on autoassociative neural networks of the geometric transformations model,”2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, pp. 231-234, 2016.
dc.relation.references[18] M. Nazarkevych, R. Oliiarnyk, H. Nazarkevych, O. Kramarenko, and I. Onyshschenko, “The method of encryption based on Ateb-functions,” 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, pp. 129-133, 2016.
dc.relation.references[19] I Dronyuk., M. Nazarkevych, and Z. Poplavska, “Gabor filters generalization based on ateb-functions for information security,” in Advances in Intelligent Systems and Computing, vol. 659, pp. 195-206, 2018.
dc.relation.referencesen[1] A. V. Palagin, and Yu. S. Yakovlev, System integration of computer equipment. Vinnytsia: UNIVERSUM-Vinnytsia, 2005. (in Russian)
dc.relation.referencesen[2] V. P. Gribachev, "Element base of hardware implementations of neural networks," in Components and technologies, no. 8, 2006. (in Russian)
dc.relation.referencesen[3] S. Haykin, Neural networks and learning machines, 3rd ed. New York: Prentice Hall, 2009.
dc.relation.referencesen[4] Ye. V. Bodyanskiy and O. G. Rudenko, Artificial neural networks: architectures, learning, applications. Kharkiv: TELETEH, 2004. (in Russian)
dc.relation.referencesen[5] W. S. McCulloch, and W. Pitts, "A logical calculus of the ideas immanent in nervous activity" in The Bulletin of Mathematical Biophysics, vol. 5, iss. 4, pp. 115–133, 1943.
dc.relation.referencesen[6] ADALINE (Adaptive linear) [Electronic Resource]: http://www.cs.utsa.edu/~bylander/cs4793/learnsc32.pdf
dc.relation.referencesen[7] K. Fukushima, "Cognitron: A self-organizing multilayered neural network" in Biological cybernetics, vol. 20, iss. 3-4, pp. 121–136, 1975.
dc.relation.referencesen[8] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities" in Proceedings of the national academy of sciences, vol. 79, iss. 8, pp. 2554–2558, 1982.
dc.relation.referencesen[9] J. Cao, and J. Liang, "Boundedness and stability for Cohen–Grossberg neural network with time-varying delays," in Journal of Mathematical Analysis and Applications, vol. 296, iss. 2, pp. 665–685, 2004.
dc.relation.referencesen[10] Yu. M. Rashkevich, R. O. Tkachenko, I. G. Tsmots, and D. D. Peleshko, Non-linear methods, algorithms and structures for processing of signals and images in real time: monograph. Lviv: Lviv Polytechnic Publishing House, 2014. (in Ukrainian)
dc.relation.referencesen[11] I. G. Tsmots, O. V. Skorokhoda, and B. I. Balych, "Model and VLSI structures of the parallel-vertical type formal neuron using bus multiplexing," in Modeling and Information Technologies, Digest of Scientific Papers of the G.E. Puhov Institute of Modeling Problems in the Energy, Lviv, vol. 67, pp. 160-166, 2013. (in Ukrainian)
dc.relation.referencesen[12] I. G. Tsmots, O. V. Skorokhoda, and V. B. Krasovskii, "Models and VLSI structures of a parallel-vertical type formal neuron combining the processes of data incoming and processing," in Modeling and Information Technologies, Digest of Scientific Papers of the G.E. Puhov Institute of Modeling Problems in the Energy, Lviv, vol. 70, pp. 137-145, 2013. (in Ukrainian)
dc.relation.referencesen[13] I. G. Tsmots, O. V. Skorokhoda, and B. I. Balych, "Model and VLSI structure of a parallel-vertical type formal neuron with tabular macropartial results," in Modeling and Information Technologies, Digest of Scientific Papers of the G.E. Puhov Institute of Modeling Problems in the Energy, Lviv, vol. 73, pp. 133-138, 2014. (in Ukrainian)
dc.relation.referencesen[14] I. G. Tsmots, O. V. Skorokhoda, and V. M. Tesliuk, A device for calculating scalar product. Patent No 101922 Ukraine, G06F 7/38. Bul. no. 9, 2013. (in Ukrainian)
dc.relation.referencesen[15] I. Tsmots, O. Skorokhoda, V. Rabyk, and I. Ignatyev, "Basic verticalparallel real time neural network components," XIIth International Scientific and Technical Conference "Computer Sciences and Information Technologies" (CSIT), Lviv, pp. 344–347, 2017.
dc.relation.referencesen[16] I. Izonin, R. Tkachenko, D. Peleshko, T. Rak, and D. Batyuk, "Learningbased image super-resolution using weight coefficients of synaptic connections," Xth International Scientific and Technical Conference "Computer Sciences and Information Technologies" (CSIT), Lviv, pp. 25-29, 2015.
dc.relation.referencesen[17] Y. Tsymbal, and R. Tkachenko, "A digital watermarking scheme based on autoassociative neural networks of the geometric transformations model,"2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, pp. 231-234, 2016.
dc.relation.referencesen[18] M. Nazarkevych, R. Oliiarnyk, H. Nazarkevych, O. Kramarenko, and I. Onyshschenko, "The method of encryption based on Ateb-functions," 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, pp. 129-133, 2016.
dc.relation.referencesen[19] I Dronyuk., M. Nazarkevych, and Z. Poplavska, "Gabor filters generalization based on ateb-functions for information security," in Advances in Intelligent Systems and Computing, vol. 659, pp. 195-206, 2018.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage438
dc.citation.epage443
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Tsmots_I-Neural_Like_Means_for_Data_438-443.pdf375.68 kBAdobe PDFView/Open
2018_Tsmots_I-Neural_Like_Means_for_Data_438-443__COVER.png541 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.