Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52537
Title: Dactyl Alphabet Modeling and Recognition Using Cross Platform Software
Authors: Kondratiuk, Sergii
Krak, Iurii
Affiliation: Taras Shevchenko National University
Bibliographic description (Ukraine): Kondratiuk S. Dactyl Alphabet Modeling and Recognition Using Cross Platform Software / Sergii Kondratiuk, Iurii Krak // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 420–423. — (Hybrid Systems of Computational Intelligence).
Bibliographic description (International): Kondratiuk S. Dactyl Alphabet Modeling and Recognition Using Cross Platform Software / Sergii Kondratiuk, Iurii Krak // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 420–423. — (Hybrid Systems of Computational Intelligence).
Is part of: Data stream mining and processing : proceedings of the IEEE second international conference, 2018
Conference/Event: IEEE second international conference "Data stream mining and processing"
Issue Date: 28-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Temporal Coverage: 21-25 August 2018, Lviv
Keywords: cross platform
sing language
dactyl modeling
gesture recognition
Number of pages: 4
Page range: 420-423
Start page: 420
End page: 423
Abstract: The technology, which is implemented with cross platform tools, is proposed for modeling of gesture units of sign language, animation between states of gesture units with a combination of gestures (words). Implemented technology simulates sequence of gestures using virtual spatial hand model and performs recognition of dactyl items from camera input. With the cross platform means technology achieves the ability to run on multiple platforms without re-implementing for each platform.
URI: https://ena.lpnu.ua/handle/ntb/52537
ISBN: © Національний університет „Львівська політехніка“, 2018
© Національний університет „Львівська політехніка“, 2018
Copyright owner: © Національний університет “Львівська політехніка”, 2018
URL for reference material: http://www.patentlyapple.com/patently-apple/2014/12/apple-invents-a-highlyadvanced-air-gesturing-system-for-future-idevices-and-beyond.html
References (Ukraine): [1] P. Mell and T. Grance, ”The NIST Definition of Cloud Computing,” (Technical report), National Institute of Standards and Technology: U.S. Department of Commerce, pp. 1-7, September 2011. doi:10.6028/NIST.SP.800-145. Special publication 800-145.
[2] The Linux Information Project, Cross-platform Definition.
[3] J. Smith, and R. Nair, “The Architecture of Virtual Machines,” Computer, vol. 38, no 5, pp. 32–38, 2005.
[4] ASL Sing language dictionary www.signasl.org/sign/model
[5] L. A. Graschenko, A. P. Fisun and et., Teoreticheskie i prakticheskie osnovyi cheloveko-kompyuternogo vzaimodeystviya: bazovyie ponyatiya cheloveko-kompyuternyih sistem v informatike i informatsionnoy bezopasnosti: Monografiya / Red. A. P. Fisun. Orel: OGU, 2004. Dep. v VINITI 15.10.2004 g. # 1624 — V2004
[6] Samsung TV Gesture book www.samsung.com/ph/smarttv/common/guide_book_3p_si/waving.html
[7] Apple Touchless Gesture System for iDevices http://www.patentlyapple.com/patently-apple/2014/12/apple-invents-a-highlyadvanced-air-gesturing-system-for-future-idevices-and-beyond.html
[8] R. Z. Khan, I. A. Noor, “Comparative study of hand gesture recognition system,” Natarajan Meghanathan, et al. (Eds): SIPM, FCST, ITCA, WSE, ACSIT, CS & IT 06, pp. 203–213, 2012.
[9] M. Neff, M. Kipp, I. Albrecht, and H.-P., “Seidel Gesture Modeling and Animation by Imitation,” Technical Report MPI-I-2006-1-005, Max-Planck-Institut Informatik, Saabrucken, Germany, 2006.
[10] A. Shapiro, D. Chu, B. Allen, and P. Faloutsos, “A Dynamic Controller Toolkit,” Sandbox '07 Proceedings of the 2007 ACM SIGGRAPH symposium on Video games, , San Diego, California, pp. 15-20, August 04 - 05, 2007
[11] Iu. G. Kryvonos, Yu. V. Krak, Yu. V. Barchukova, and B. A.Trocenko, “Human Hand Motion Parametrization for Dactilemes Modeling,” Journal of Automation and Information Sciences, vol. 43, no. 12, pp.1-11, 2011.
[12] O. Aran, I. Ari, A. Benoit, A. Huerta Carrillo, F.-X. Fanard, P. Campr, L. Akarun, A. Caplier, M. Rombaut and B. Sankur, “Sing language tutoring tool,” 2006 eNTERFACE’06, Dubrovnik, Croatia. Final Project Report, July 17 – August 11, pp. 1-11, 2006.
[13] J.L. Raheja, A.S Sadab and A. Chaudhary, “Android based portable hand sign recognition system,” Ed: A. Chaudhary, Recent Trends in Hand Gesture Recognition, GCSR, vol. 3, pp. 1-18, 2015. DOI: 10.15579/gcsr.vol3.ch1,
[14] W. C. Stokoe, “Sign Language Structure,” An Outline of the Visual Communication Systems of the American Deaf., p.61-67, 1960.
[15] Unity3D framework www.unity3d.com
[16] Tensorflow framework documentation www.tensorflow.org/api/
[17] R. Tubiana, J. Thomine, and E. Mackin, Examination of the hand and wrist. 2nd ed. Martin Dunitz, 1996. ISBN: 1853175447/1-85317-544-7. Publisher: Informa Healthcare
[18] YAML – The Official YAML Web Site www.yaml.org
[19] O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition: Towards large vocabulary statistical recognition systems handling multiple signers,” Computer Vision and Image Understanding, vol. 141, pp. 108–125, 2015.
[20] P. Dreuw, D. Rybach, T. Deselaers, M. Zahedi, and H. Ney, “Speech recognition techniques for a sign language recognition system,” In Interspeech, Antwerp, Belgium, ISCA best student paper award Interspeech 2007, pp. 2513-2516, August 2007.
[21] Eng-Jon Ong et al. “Sign language recognition using sequential pattern trees,” 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2200–2207, 2012.
[22] A. Agarwal, and M. Thakur, “Sign Language Recognition using Microsoft Kinect,” IEEE International Conference on Contemporary Computing, pp. 181-185, 2013.
[23] L. Pigou, S. Dieleman, P.-J. Kindermans, and B. Schrauwen, "Italian Sign language: Sign Language Recognition Using Convolutional Neural Networks. ELIS, Ghent University, Ghent, Belgium, 2015
[24] Brandon Garcia, and Sigberto Alarcon Viesca, American Sign language: Real-time American Sign Language Recognition with Convolutional Neural Networks Stanford University Stanford, CA, pp. 225-232, 2015.
[25] V. Bobic, “Hand gesture recognition using neural network based techniques,” School of Electrical Engineering, University of Belgrade, 2016.
[26] PostgreSQL official web site www.postgresql.org
References (International): [1] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," (Technical report), National Institute of Standards and Technology: U.S. Department of Commerce, pp. 1-7, September 2011. doi:10.6028/NIST.SP.800-145. Special publication 800-145.
[2] The Linux Information Project, Cross-platform Definition.
[3] J. Smith, and R. Nair, "The Architecture of Virtual Machines," Computer, vol. 38, no 5, pp. 32–38, 2005.
[4] ASL Sing language dictionary www.signasl.org/sign/model
[5] L. A. Graschenko, A. P. Fisun and et., Teoreticheskie i prakticheskie osnovyi cheloveko-kompyuternogo vzaimodeystviya: bazovyie ponyatiya cheloveko-kompyuternyih sistem v informatike i informatsionnoy bezopasnosti: Monografiya, Red. A. P. Fisun. Orel: OGU, 2004. Dep. v VINITI 15.10.2004 g. # 1624 - V2004
[6] Samsung TV Gesture book www.samsung.com/ph/smarttv/common/guide_book_3p_si/waving.html
[7] Apple Touchless Gesture System for iDevices http://www.patentlyapple.com/patently-apple/2014/12/apple-invents-a-highlyadvanced-air-gesturing-system-for-future-idevices-and-beyond.html
[8] R. Z. Khan, I. A. Noor, "Comparative study of hand gesture recognition system," Natarajan Meghanathan, et al. (Eds): SIPM, FCST, ITCA, WSE, ACSIT, CS & IT 06, pp. 203–213, 2012.
[9] M. Neff, M. Kipp, I. Albrecht, and H.-P., "Seidel Gesture Modeling and Animation by Imitation," Technical Report MPI-I-2006-1-005, Max-Planck-Institut Informatik, Saabrucken, Germany, 2006.
[10] A. Shapiro, D. Chu, B. Allen, and P. Faloutsos, "A Dynamic Controller Toolkit," Sandbox '07 Proceedings of the 2007 ACM SIGGRAPH symposium on Video games, , San Diego, California, pp. 15-20, August 04 - 05, 2007
[11] Iu. G. Kryvonos, Yu. V. Krak, Yu. V. Barchukova, and B. A.Trocenko, "Human Hand Motion Parametrization for Dactilemes Modeling," Journal of Automation and Information Sciences, vol. 43, no. 12, pp.1-11, 2011.
[12] O. Aran, I. Ari, A. Benoit, A. Huerta Carrillo, F.-X. Fanard, P. Campr, L. Akarun, A. Caplier, M. Rombaut and B. Sankur, "Sing language tutoring tool," 2006 eNTERFACE’06, Dubrovnik, Croatia. Final Project Report, July 17 – August 11, pp. 1-11, 2006.
[13] J.L. Raheja, A.S Sadab and A. Chaudhary, "Android based portable hand sign recognition system," Ed: A. Chaudhary, Recent Trends in Hand Gesture Recognition, GCSR, vol. 3, pp. 1-18, 2015. DOI: 10.15579/gcsr.vol3.ch1,
[14] W. C. Stokoe, "Sign Language Structure," An Outline of the Visual Communication Systems of the American Deaf., p.61-67, 1960.
[15] Unity3D framework www.unity3d.com
[16] Tensorflow framework documentation www.tensorflow.org/api/
[17] R. Tubiana, J. Thomine, and E. Mackin, Examination of the hand and wrist. 2nd ed. Martin Dunitz, 1996. ISBN: 1853175447/1-85317-544-7. Publisher: Informa Healthcare
[18] YAML – The Official YAML Web Site www.yaml.org
[19] O. Koller, J. Forster, and H. Ney, "Continuous sign language recognition: Towards large vocabulary statistical recognition systems handling multiple signers," Computer Vision and Image Understanding, vol. 141, pp. 108–125, 2015.
[20] P. Dreuw, D. Rybach, T. Deselaers, M. Zahedi, and H. Ney, "Speech recognition techniques for a sign language recognition system," In Interspeech, Antwerp, Belgium, ISCA best student paper award Interspeech 2007, pp. 2513-2516, August 2007.
[21] Eng-Jon Ong et al. "Sign language recognition using sequential pattern trees," 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2200–2207, 2012.
[22] A. Agarwal, and M. Thakur, "Sign Language Recognition using Microsoft Kinect," IEEE International Conference on Contemporary Computing, pp. 181-185, 2013.
[23] L. Pigou, S. Dieleman, P.-J. Kindermans, and B. Schrauwen, "Italian Sign language: Sign Language Recognition Using Convolutional Neural Networks. ELIS, Ghent University, Ghent, Belgium, 2015
[24] Brandon Garcia, and Sigberto Alarcon Viesca, American Sign language: Real-time American Sign Language Recognition with Convolutional Neural Networks Stanford University Stanford, CA, pp. 225-232, 2015.
[25] V. Bobic, "Hand gesture recognition using neural network based techniques," School of Electrical Engineering, University of Belgrade, 2016.
[26] PostgreSQL official web site www.postgresql.org
Content type: Conference Abstract
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Kondratiuk_S-Dactyl_Alphabet_Modeling_420-423.pdf137.45 kBAdobe PDFView/Open
2018_Kondratiuk_S-Dactyl_Alphabet_Modeling_420-423__COVER.png660.72 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.