Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52527
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSokolovskyy, Yaroslav
dc.contributor.authorLevkovych, Maryana
dc.contributor.authorMokrytska, Olha
dc.contributor.authorAtamanyuk, Vitalij
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:05:46Z-
dc.date.available2020-06-19T12:05:46Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationMathematical Modeling of Two-Dimensional Deformation-Relaxation Processes in Environments with Fractal Structure / Yaroslav Sokolovskyy, Maryana Levkovych, Olha Mokrytska, Vitalij Atamanyuk // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 375–380. — (Hybrid Systems of Computational Intelligence).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52527-
dc.description.abstractIn the work, the general mathematical model of two-dimensional viscoelastic deformation using the fractional integro-differential apparatus is constructed. The relations in the differential and integral forms are given to present twodimensional Kelvin’s and Voigt’s rheological models. The algorithm of a numerical method for solving the problem, based on the use of finite-difference schemes, was developed. The analytical expressions to describe deformations of onedimensional fractal models are given, and on the basis of which the identification of fractional-differential parameters is carried out. The influence of fractal parameters on the dynamics of deformation and stress variation for different rheological models is investigated.
dc.format.extent375-380
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjecttwo-dimensional mathematical model
dc.subjectderivative of fractional order
dc.subjectdeformation-relaxation processes
dc.subjectnumerical method
dc.subjectstatistical criterion
dc.titleMathematical Modeling of Two-Dimensional Deformation-Relaxation Processes in Environments with Fractal Structure
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationUkrainian National Forestry University
dc.contributor.affiliationHetman Petro Sahaidachnyi National Army Academy
dc.format.pages6
dc.identifier.citationenMathematical Modeling of Two-Dimensional Deformation-Relaxation Processes in Environments with Fractal Structure / Yaroslav Sokolovskyy, Maryana Levkovych, Olha Mokrytska, Vitalij Atamanyuk // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 375–380. — (Hybrid Systems of Computational Intelligence).
dc.relation.references[1] J. Sokolovskyy, V. Shymanskyi, M. Levkovych, and V. Yarkun, “Mathematical and Software providing of research of deformation and relaxation processes in environments with fractal structure,” XII international scientific and technical conference “Computer science and informational technologies” CSIT 2017, Lviv, Ukraine, pp. 24-2705-08 September, 2017.
dc.relation.references[2] Ya. I. Sokolovsky, and M. V. Levkovych, “Numerical method for the study of nonisothermic moisture transfer in the environments with fractal structure,” Bulletin of the National University "Lviv Polytechnic" Computer Science and Information Technologies, no. 843, pp. 288-296, 2015. (in Ukrainian)
dc.relation.references[3] L. Livi, A. Sadeghian, and A. Di Ieva, Fractal Geometry Meets Computational Intelligence: Future Perspectives. In: Di Ieva A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY, 2016
dc.relation.references[4] V. V. Vasilyev, amd L. A. “Simak Fractional calculus and approximation methods in the modeling of dynamic systems,” Scientific publication Kiev, National Academy of Sciences of Ukraine, p.256, 2008
dc.relation.references[5] V. Uchajkin, Method of fractional derivatives. Ulyanovsk: Publishing house «Artishok», 2008.
dc.relation.references[6] I. Podlubny, Fractional Differential Equations, vol. 198. Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
dc.relation.references[7] Liu Tong, “Creep of wood under a large span of loads in constant and varying environments,” Pt.1: Experimental observations and analysis, Holz als Roh- und Werkstoff, vol. 51, pp. 400-405, 1993.
dc.relation.references[8] Е. Ogorodnikov, V. Radchenko, and L. Ugarova, “Mathematical modeling of hereditary deformational elastic body on the basis of structural models and of vehicle of fractional integro-differentiation Riman-Liuvil”, Vest. Sam. Gos. Techn. Un-ty. Series. Phys.-math. sciences, vol. 20, no. 1, pp. 167-194, 2016.
dc.relation.references[9] O. Riznik, I. Yurchak, E. Vdovenko, and A. Korchagina, “Model of stegosystem images on basis of pseudonoise codes”, VIth International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, pp. 51-52, 2010.
dc.relation.referencesen[1] J. Sokolovskyy, V. Shymanskyi, M. Levkovych, and V. Yarkun, "Mathematical and Software providing of research of deformation and relaxation processes in environments with fractal structure," XII international scientific and technical conference "Computer science and informational technologies" CSIT 2017, Lviv, Ukraine, pp. 24-2705-08 September, 2017.
dc.relation.referencesen[2] Ya. I. Sokolovsky, and M. V. Levkovych, "Numerical method for the study of nonisothermic moisture transfer in the environments with fractal structure," Bulletin of the National University "Lviv Polytechnic" Computer Science and Information Technologies, no. 843, pp. 288-296, 2015. (in Ukrainian)
dc.relation.referencesen[3] L. Livi, A. Sadeghian, and A. Di Ieva, Fractal Geometry Meets Computational Intelligence: Future Perspectives. In: Di Ieva A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY, 2016
dc.relation.referencesen[4] V. V. Vasilyev, amd L. A. "Simak Fractional calculus and approximation methods in the modeling of dynamic systems," Scientific publication Kiev, National Academy of Sciences of Ukraine, p.256, 2008
dc.relation.referencesen[5] V. Uchajkin, Method of fractional derivatives. Ulyanovsk: Publishing house "Artishok", 2008.
dc.relation.referencesen[6] I. Podlubny, Fractional Differential Equations, vol. 198. Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
dc.relation.referencesen[7] Liu Tong, "Creep of wood under a large span of loads in constant and varying environments," Pt.1: Experimental observations and analysis, Holz als Roh- und Werkstoff, vol. 51, pp. 400-405, 1993.
dc.relation.referencesen[8] E. Ogorodnikov, V. Radchenko, and L. Ugarova, "Mathematical modeling of hereditary deformational elastic body on the basis of structural models and of vehicle of fractional integro-differentiation Riman-Liuvil", Vest. Sam. Gos. Techn. Un-ty. Series. Phys.-math. sciences, vol. 20, no. 1, pp. 167-194, 2016.
dc.relation.referencesen[9] O. Riznik, I. Yurchak, E. Vdovenko, and A. Korchagina, "Model of stegosystem images on basis of pseudonoise codes", VIth International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, pp. 51-52, 2010.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage375
dc.citation.epage380
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Sokolovskyy_Y-Mathematical_Modeling_375-380.pdf420.86 kBAdobe PDFView/Open
2018_Sokolovskyy_Y-Mathematical_Modeling_375-380__COVER.png442.64 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.