Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52516
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShafronenko, Alina
dc.contributor.authorBodyanskiy, Yevgeniy
dc.contributor.authorDolotov, Artem
dc.contributor.authorSetlak, Galina
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:05:35Z-
dc.date.available2020-06-19T12:05:35Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationFuzzy Clustering of Distorted Observations Based On Optimal Expansion Using Partial Distances / Alina Shafronenko, Yevgeniy Bodyanskiy, Artem Dolotov, Galina Setlak // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 327–330. — (Hybrid Systems of Computational Intelligence).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52516-
dc.description.abstractThe neural system that solves a problem of fuzzy clustering of distorted observations based on optimal expansion strategy using partial distance is proposed in this article. To solve this problem we propose the learning algorithm based on hybrid of rule “Winner-Takes-More” using modified self-organizing neuro-fuzzy Kohonen network. This modified system is characterized by basic characteristics, such as: high speed, simple numerical realization, processing of distorted information in online mode.
dc.format.extent327-330
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectKohonen self-organizing network
dc.subjectfuzzy clustering
dc.subjectincomplete observations with gaps
dc.subjectpartial distance
dc.subjectoptimal expansion
dc.titleFuzzy Clustering of Distorted Observations Based On Optimal Expansion Using Partial Distances
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationKharkiv National University of Radio Electronics
dc.contributor.affiliationRzeszow University of Technology
dc.format.pages4
dc.identifier.citationenFuzzy Clustering of Distorted Observations Based On Optimal Expansion Using Partial Distances / Alina Shafronenko, Yevgeniy Bodyanskiy, Artem Dolotov, Galina Setlak // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 327–330. — (Hybrid Systems of Computational Intelligence).
dc.relation.references[1] T Marwala, “Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques,” Hershey-New York: Information Science Reference, 2009.
dc.relation.references[2] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, New York, 1981.
dc.relation.references[3] E. Lughofer, “Evolving Fuzzy Systems. Methodologies, Advanced Concepts and Applications,” Berlin-Hagenberg, 2011.
dc.relation.references[4] T. Kohonen, “Self-Organizing Maps,” Berlin: Springer-Verlag, 1995.
dc.relation.references[5] A. Y. Shafronenko, V. V. Volkova, and Ye. Bodyanskiy, “Adaptive clustering data with gaps,” Radioelectronics, informatics, control, no. 2. pp. 115-119, 2011. (in Russian)
dc.relation.references[6] Ye. Bodyanskiy, A. Shafronenko, and V. Volkova, “Аdaptive clustering of incomplete data using neuro-fuzzy Kohonen network. Artificial Intelligence Methods and Techniques for Business and Engineering Applications,” ITHEA, Rzeszow, Poland; Sofia, Bulgaria. pp. 287-296, 2012.
dc.relation.references[7] Ye. Bodyanskiy, A. Shafronenko, and V. Volkova, “Adaptive fuzzy probabilistic clustering of incomplete data,” Int. J. “Information, models and analyses”, vol.2, no. 2, pp. 112-117, 2013.
dc.relation.references[8] Ye. Bodyanskiy, А. Shafronenko, and V. Volkova, “Neuro fuzzy Kohonen network for incomplete data clustering using optimal completion strategy,” Proceedings 20th East West Fuzzy Colloquium 2013, Zittau, pp. 214-223, 25-27 September 2013.
dc.relation.references[9] V. Kolodyazhniy, Ye. Bodyanskiy and Ye. Gorshkov, “New recursive learning algorithms for fuzzy Kohonen clustering network,” Proc. 17th Int. Workshop on Nonlinear Dynamics of Electronc Systems, Rapperswil, Switzerland, pp. 58-61,, June 21-24, 2009.
dc.relation.references[10] R. J. Hathaway, and J. C Bezdek, “Fuzzy c-means clustering of incomplete data,”. IEEE Trans. on Systems, Man, and Cybernetics, vol. 31, no. 5, pp. 735-744, 2001.
dc.relation.referencesen[1] T Marwala, "Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques," Hershey-New York: Information Science Reference, 2009.
dc.relation.referencesen[2] J. C. Bezdek, "Pattern Recognition with Fuzzy Objective Function Algorithms," Plenum Press, New York, 1981.
dc.relation.referencesen[3] E. Lughofer, "Evolving Fuzzy Systems. Methodologies, Advanced Concepts and Applications," Berlin-Hagenberg, 2011.
dc.relation.referencesen[4] T. Kohonen, "Self-Organizing Maps," Berlin: Springer-Verlag, 1995.
dc.relation.referencesen[5] A. Y. Shafronenko, V. V. Volkova, and Ye. Bodyanskiy, "Adaptive clustering data with gaps," Radioelectronics, informatics, control, no. 2. pp. 115-119, 2011. (in Russian)
dc.relation.referencesen[6] Ye. Bodyanskiy, A. Shafronenko, and V. Volkova, "Adaptive clustering of incomplete data using neuro-fuzzy Kohonen network. Artificial Intelligence Methods and Techniques for Business and Engineering Applications," ITHEA, Rzeszow, Poland; Sofia, Bulgaria. pp. 287-296, 2012.
dc.relation.referencesen[7] Ye. Bodyanskiy, A. Shafronenko, and V. Volkova, "Adaptive fuzzy probabilistic clustering of incomplete data," Int. J. "Information, models and analyses", vol.2, no. 2, pp. 112-117, 2013.
dc.relation.referencesen[8] Ye. Bodyanskiy, A. Shafronenko, and V. Volkova, "Neuro fuzzy Kohonen network for incomplete data clustering using optimal completion strategy," Proceedings 20th East West Fuzzy Colloquium 2013, Zittau, pp. 214-223, 25-27 September 2013.
dc.relation.referencesen[9] V. Kolodyazhniy, Ye. Bodyanskiy and Ye. Gorshkov, "New recursive learning algorithms for fuzzy Kohonen clustering network," Proc. 17th Int. Workshop on Nonlinear Dynamics of Electronc Systems, Rapperswil, Switzerland, pp. 58-61,, June 21-24, 2009.
dc.relation.referencesen[10] R. J. Hathaway, and J. C Bezdek, "Fuzzy c-means clustering of incomplete data,". IEEE Trans. on Systems, Man, and Cybernetics, vol. 31, no. 5, pp. 735-744, 2001.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage327
dc.citation.epage330
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Shafronenko_A-Fuzzy_Clustering_of_327-330.pdf306.19 kBAdobe PDFView/Open
2018_Shafronenko_A-Fuzzy_Clustering_of_327-330__COVER.png1.19 MBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.