Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPavlyshenko, Bohdan
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:05:23Z-
dc.date.available2020-06-19T12:05:23Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationPavlyshenko B. Using Stacking Approaches for Machine Learning Models / Bohdan Pavlyshenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 255–258. — (Dynamic Data Mining & Data Stream Mining).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52503-
dc.description.abstractIn this paper, we study the usage of stacking approach for building ensembles of machine learning models. The cases for time series forecasting and logistic regression have been considered. The results show that using stacking technics we can improve performance of predictive models in considered cases.
dc.format.extent255-258
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.relation.urihttp://kaggle.com
dc.relation.urihttp://www.kaggle.com/c/rossmann-store-sales
dc.relation.urihttps://www.kaggle.com/c/grupo-bimbo-inventory-demand
dc.relation.urihttps://www.kaggle.com/c/grupo-bimbo-inventorydemand/discussion/23863
dc.relation.urihttps://www.kaggle.com/bpavlyshenko/bimboxgboost-r-script-lb-0-457
dc.relation.urihttps://www.kaggle.com/c/bosch-production-line-performance
dc.relation.urihttps://www.kaggle.com/c/boschproduction-line-performance/forums/t/24065/the-magical-feature-fromlb-0-3-to-0-4
dc.relation.urihttps://www.kaggle.com/mmueller/bosch-production-lineperformance/road-2-0-4
dc.relation.urihttps://www.kaggle.com/alexxanderlarko/boschproduction-line-performance/road-2-0-4-featureset
dc.relation.urihttp://sourceforge.net/projects/mcmcjags/files/Manuals/3.x/jags
dc.subjectmachine learning
dc.subjectstacking
dc.subjectforecasting
dc.subjectclassification
dc.subjectregression
dc.titleUsing Stacking Approaches for Machine Learning Models
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationIvan Franko National University of Lviv
dc.format.pages4
dc.identifier.citationenPavlyshenko B. Using Stacking Approaches for Machine Learning Models / Bohdan Pavlyshenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 255–258. — (Dynamic Data Mining & Data Stream Mining).
dc.relation.references[1] Kaggle: Your Home for Data Science. URL: http://kaggle.com
dc.relation.references[2] B. M. Pavlyshenko. “Linear, machine learning and probabilistic approaches for time series analysis,” in IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, pp. 377-381, August 23-27, 2016.
dc.relation.references[3] “Rossmann Store Sales”, Kaggle.Com, URL: http://www.kaggle.com/c/rossmann-store-sales .
dc.relation.references[4] D. H. Wolpert. “Stacked generalization.” Neural networks, 5(2), pp. 241-259,1992.
dc.relation.references[5] Kaggle competition “Grupo Bimbo Inventory Demand ” URL: https://www.kaggle.com/c/grupo-bimbo-inventory-demand
dc.relation.references[6] Kaggle competition “Grupo Bimbo Inventory Demand” URL:https://www.kaggle.com/c/grupo-bimbo-inventorydemand/discussion/23863
dc.relation.references[7] T. Chen and C. Guestrin. “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM. 2016, pp. 785-794.
dc.relation.references[8] Kaggle competition “Grupo Bimbo Inventory Demand” Bimbo XGBoost R script LB:0.457. URL: https://www.kaggle.com/bpavlyshenko/bimboxgboost-r-script-lb-0-457
dc.relation.references[9] J. Friedman. “Greedy function approximation: a gradient boosting machine.”, Annals of Statistics, 29(5):1189-1232, 2001.
dc.relation.references[10] J. Friedman. “Stochastic gradient boosting.”, Computational Statistics & Data Analysis, 38(4):367-378, 2002.
dc.relation.references[11] Kaggle competition “Bosch Production Line Performance”. URL: https://www.kaggle.com/c/bosch-production-line-performance
dc.relation.references[12] B. Pavlyshenko. “Machine learning, linear and bayesian models for logistic regression in failure detection problems.,’ in IEEE International Conference on Big Data (Big Data), Washington D.C., USA, pp. 2046-2050, December 5-8, 2016.
dc.relation.references[13] Kaggle competition “Bosch Production Line Performance”. The Magical Feature : from LB 0.3- to 0.4+. URL:https://www.kaggle.com/c/boschproduction-line-performance/forums/t/24065/the-magical-feature-fromlb-0-3-to-0-4
dc.relation.references[14] Kaggle competition “Bosch Production Line Performance”. Road2-0.4+. URL:https://www.kaggle.com/mmueller/bosch-production-lineperformance/road-2-0-4
dc.relation.references[15] Kaggle competition “Bosch Production Line Performance”. Road-2-0.4+ –>FeatureSet++. URL: https://www.kaggle.com/alexxanderlarko/boschproduction-line-performance/road-2-0-4-featureset
dc.relation.references[16] John Kruschke. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press, 2014.
dc.relation.references[17] Martyn Plummer. JAGS Version 3.4.0 user manual. URL:http://sourceforge.net/projects/mcmcjags/files/Manuals/3.x/jags user manual.pdf
dc.relation.referencesen[1] Kaggle: Your Home for Data Science. URL: http://kaggle.com
dc.relation.referencesen[2] B. M. Pavlyshenko. "Linear, machine learning and probabilistic approaches for time series analysis," in IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, pp. 377-381, August 23-27, 2016.
dc.relation.referencesen[3] "Rossmann Store Sales", Kaggle.Com, URL: http://www.kaggle.com/c/rossmann-store-sales .
dc.relation.referencesen[4] D. H. Wolpert. "Stacked generalization." Neural networks, 5(2), pp. 241-259,1992.
dc.relation.referencesen[5] Kaggle competition "Grupo Bimbo Inventory Demand " URL: https://www.kaggle.com/c/grupo-bimbo-inventory-demand
dc.relation.referencesen[6] Kaggle competition "Grupo Bimbo Inventory Demand" URL:https://www.kaggle.com/c/grupo-bimbo-inventorydemand/discussion/23863
dc.relation.referencesen[7] T. Chen and C. Guestrin. "Xgboost: A scalable tree boosting system." In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM. 2016, pp. 785-794.
dc.relation.referencesen[8] Kaggle competition "Grupo Bimbo Inventory Demand" Bimbo XGBoost R script LB:0.457. URL: https://www.kaggle.com/bpavlyshenko/bimboxgboost-r-script-lb-0-457
dc.relation.referencesen[9] J. Friedman. "Greedy function approximation: a gradient boosting machine.", Annals of Statistics, 29(5):1189-1232, 2001.
dc.relation.referencesen[10] J. Friedman. "Stochastic gradient boosting.", Computational Statistics & Data Analysis, 38(4):367-378, 2002.
dc.relation.referencesen[11] Kaggle competition "Bosch Production Line Performance". URL: https://www.kaggle.com/c/bosch-production-line-performance
dc.relation.referencesen[12] B. Pavlyshenko. "Machine learning, linear and bayesian models for logistic regression in failure detection problems.,’ in IEEE International Conference on Big Data (Big Data), Washington D.C., USA, pp. 2046-2050, December 5-8, 2016.
dc.relation.referencesen[13] Kaggle competition "Bosch Production Line Performance". The Magical Feature : from LB 0.3- to 0.4+. URL:https://www.kaggle.com/c/boschproduction-line-performance/forums/t/24065/the-magical-feature-fromlb-0-3-to-0-4
dc.relation.referencesen[14] Kaggle competition "Bosch Production Line Performance". Road2-0.4+. URL:https://www.kaggle.com/mmueller/bosch-production-lineperformance/road-2-0-4
dc.relation.referencesen[15] Kaggle competition "Bosch Production Line Performance". Road-2-0.4+ –>FeatureSet++. URL: https://www.kaggle.com/alexxanderlarko/boschproduction-line-performance/road-2-0-4-featureset
dc.relation.referencesen[16] John Kruschke. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press, 2014.
dc.relation.referencesen[17] Martyn Plummer. JAGS Version 3.4.0 user manual. URL:http://sourceforge.net/projects/mcmcjags/files/Manuals/3.x/jags user manual.pdf
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage255
dc.citation.epage258
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Pavlyshenko_B-Using_Stacking_Approaches_255-258.pdf239.3 kBAdobe PDFView/Open
2018_Pavlyshenko_B-Using_Stacking_Approaches_255-258__COVER.png549.8 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.