Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52488
Title: MEMS-based Inertial Sensor Signals and Machine Learning Methods for Classifying Robot Motion
Authors: Ponomaryova, Ganna
Nevlydov, Igor
Filipenko, Oleksandr
Volkova, Mariya
Affiliation: Kharkiv National University of Radio Electronics
Bibliographic description (Ukraine): MEMS-based Inertial Sensor Signals and Machine Learning Methods for Classifying Robot Motion / Ganna Ponomaryova, Igor Nevlydov, Oleksandr Filipenko, Mariya Volkova // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 13–16. — (Big Data & Data Science Using Intelligent Approaches).
Bibliographic description (International): MEMS-based Inertial Sensor Signals and Machine Learning Methods for Classifying Robot Motion / Ganna Ponomaryova, Igor Nevlydov, Oleksandr Filipenko, Mariya Volkova // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 13–16. — (Big Data & Data Science Using Intelligent Approaches).
Is part of: Data stream mining and processing : proceedings of the IEEE second international conference, 2018
Conference/Event: IEEE second international conference "Data stream mining and processing"
Issue Date: 28-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Temporal Coverage: 21-25 August 2018, Lviv
Keywords: robot
MEMS
classification
control
Number of pages: 4
Page range: 13-16
Start page: 13
End page: 16
Abstract: Robot state classification using machine-learning methods and MEMS sensors data is proposed in the paper. An experiment was performed with a three-axis MEMS gyroscope rigidly fixed to the robot body. In it we investigated the possibilities of various machine-learning methods for solving classification task.
URI: https://ena.lpnu.ua/handle/ntb/52488
ISBN: © Національний університет „Львівська політехніка“, 2018
© Національний університет „Львівська політехніка“, 2018
Copyright owner: © Національний університет “Львівська політехніка”, 2018
URL for reference material: https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU9250A-01-
https://ieeexplore.ieee.org/document/5285608//
https://pdfs.semanticscholar.org/89ca/d05d53302b4b8c465f3fc9b9eec924aff567.pdf?_ga=2.160054457.507168460.1529006792-191559443.1528161624/
https://doi.org/10.1023/A:1022627411411
http://wwwstat.stanford.edu/
References (Ukraine): [1] F. Coito, A. Eleutério, S. Valtchev, and F. Coito, “Tracking a Mobile Robot Position Using Vision and Inertial Sensor,” 5th IFIP WG 5.5/SOCOLNET DoCEIS 2014, Costa de Caparica, Portugal, AICT423, Springer, pp. 201-20, April 7-9, 2014.
[2] Inven Sense. MPU-9250 Product Specification, Revision 1.1, InvenSense Inc. [ONLINE] Available at: https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU9250A-01- v1.1.pdf. [Accessed 26/12/2017].
[3] K. Noda, Y. Hashimoto, Y. Tanaka, and Ichiro Shimoyama, “MEMS on robot applications,” TRANSDUCERS 2009 International SolidState Sensors, Actuators and Microsystems Conference [ONLINE] Available at: https://ieeexplore.ieee.org/document/5285608//
[4] K. Frank, J. Vera Nadales, P. Robertson, and M. Angermann, “Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors,” [ONLINE] Available at: https://pdfs.semanticscholar.org/89ca/d05d53302b4b8c465f3fc9b9eec924aff567.pdf?_ga=2.160054457.507168460.1529006792-191559443.1528161624/
[5] S. B. Kotsiantis, “Supervised machine learning: A review of classification techniques,” Informatica, vol. 31, pp. 249–268, 2007.
[6] C. Cortes, and V. Vapnik, “Support-vector network,” Machine Learning, vol. 20, issue 3, pp. 273-297, Sept. 1995. [Online]. Available: https://doi.org/10.1023/A:1022627411411.
[7] J. Zhu, S. Rosset, H. Zou, and T. Hastie, “Multiclass AdaBoost,” Technical report, Stanford Univ, 2005. Available at http://wwwstat.stanford.edu/ hastie/Papers/ samme.pdf.
[8] Y. Freund, and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in L.Saitta, ed., ‘Proceedings of the Thirteenth International Conference on Machine Learning (ICML’96)’, Morgan Kaufmann,1995, pp. 148–156.
[9] E. Gatnar, “Fusion of Multiple Statistical Classifiers”, in C. Preisach, H. Burkhardt, L. Schmidt-Thieme and R. Decker, eds, “Data Analysis, Machine Learning and Applications,” Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Berlin/Heidelberg, 2008, pp. 19–27.
References (International): [1] F. Coito, A. Eleutério, S. Valtchev, and F. Coito, "Tracking a Mobile Robot Position Using Vision and Inertial Sensor," 5th IFIP WG 5.5/SOCOLNET DoCEIS 2014, Costa de Caparica, Portugal, AICT423, Springer, pp. 201-20, April 7-9, 2014.
[2] Inven Sense. MPU-9250 Product Specification, Revision 1.1, InvenSense Inc. [ONLINE] Available at: https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU9250A-01- v1.1.pdf. [Accessed 26/12/2017].
[3] K. Noda, Y. Hashimoto, Y. Tanaka, and Ichiro Shimoyama, "MEMS on robot applications," TRANSDUCERS 2009 International SolidState Sensors, Actuators and Microsystems Conference [ONLINE] Available at: https://ieeexplore.ieee.org/document/5285608//
[4] K. Frank, J. Vera Nadales, P. Robertson, and M. Angermann, "Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors," [ONLINE] Available at: https://pdfs.semanticscholar.org/89ca/d05d53302b4b8c465f3fc9b9eec924aff567.pdf?_ga=2.160054457.507168460.1529006792-191559443.1528161624/
[5] S. B. Kotsiantis, "Supervised machine learning: A review of classification techniques," Informatica, vol. 31, pp. 249–268, 2007.
[6] C. Cortes, and V. Vapnik, "Support-vector network," Machine Learning, vol. 20, issue 3, pp. 273-297, Sept. 1995. [Online]. Available: https://doi.org/10.1023/A:1022627411411.
[7] J. Zhu, S. Rosset, H. Zou, and T. Hastie, "Multiclass AdaBoost," Technical report, Stanford Univ, 2005. Available at http://wwwstat.stanford.edu/ hastie/Papers/ samme.pdf.
[8] Y. Freund, and R. E. Schapire, "Experiments with a New Boosting Algorithm," in L.Saitta, ed., ‘Proceedings of the Thirteenth International Conference on Machine Learning (ICML’96)’, Morgan Kaufmann,1995, pp. 148–156.
[9] E. Gatnar, "Fusion of Multiple Statistical Classifiers", in C. Preisach, H. Burkhardt, L. Schmidt-Thieme and R. Decker, eds, "Data Analysis, Machine Learning and Applications," Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Berlin/Heidelberg, 2008, pp. 19–27.
Content type: Conference Abstract
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Ponomaryova_G-MEMS_based_Inertial_Sensor_13-16.pdf269.31 kBAdobe PDFView/Open
2018_Ponomaryova_G-MEMS_based_Inertial_Sensor_13-16__COVER.png1.61 MBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.