Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFurgala, Yuriy
dc.contributor.authorMochulsky, Yuriy
dc.contributor.authorRusyn, Bohdan
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:04:42Z-
dc.date.available2020-06-19T12:04:42Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationFurgala Y. Evaluation of Objects Recognition Efficiency on Mapes by Various Methods / Yuriy Furgala, Yuriy Mochulsky, Bohdan Rusyn // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 595–598. — (Machine Vision and Pattern Recognition).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52454-
dc.description.abstractThe paper analyzes the efficiency of image recognition on terrestrial photographs by SURF, SIFT and ORB methods. It has been shown that for high-quality images, the highest probability of recognition in the application of the SIFT method. In the case of identifying fragments of images on noisy and blurred images, the best results are obtained using the ORB method, which, together with this, has the highest performance among the methods used.
dc.format.extent595-598
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectSURF
dc.subjectSIFT
dc.subjectORB
dc.subjectrecognition efficiency
dc.titleEvaluation of Objects Recognition Efficiency on Mapes by Various Methods
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.affiliationUniversity of Technology and Humanities
dc.contributor.affiliationKarpenko Physico-Mechanical Institute of the NASU
dc.format.pages4
dc.identifier.citationenFurgala Y. Evaluation of Objects Recognition Efficiency on Mapes by Various Methods / Yuriy Furgala, Yuriy Mochulsky, Bohdan Rusyn // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 595–598. — (Machine Vision and Pattern Recognition).
dc.relation.references[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol.60, issue 2, pp. 91-110, 2004.
dc.relation.references[2] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation for local image descriptors,” Computer Vision and Pattern Recognition, pp. 506-513, 2004.
dc.relation.references[3] Luo Juan, and Oubong Gwun, “A Comparison of SIFT, PCA-SIFT and SURF,” International Journal of Image Processing, vol.3, iss. 4, pp.143-152, 2010.
dc.relation.references[4] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski, “ORB: an efficient alternative to SIFT or SURF,” 2011 IEEE International Conference on Computer Vision, pp.2564-2571, 2011.
dc.relation.references[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “SURF: Speeded Up Robust Features,” Computer Vision and Image Understanding, vol. 110, no. 3. – pp. 346-359, 2008.
dc.relation.references[6] P. M. Panchal, S. R. Panchal, and S. K. Shah, “A Comparison of SIFT and SURF,” International Journal of Innovative Research in Computer and Communication Engineering, vol. 1, no. 2, pp. 323-327, 2013.
dc.relation.references[7] P. Sykora, P. Kamencay and R. Hudec, “Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map,” AASRI Procedia, vol. 9, pp. 19-24, 2014.
dc.relation.references[8] B. O. Kapustiy, B. P. Rusyn, and V. A. Tayanov, The pattern recognition systems in small data base. Lviv: SPOLOM, 2006. (in Ukrainian).
dc.relation.references[9] B. O. Kapustiy, B. P. Rusyn, and V. A. Tajanov, “A new Approach to Determination of Correct Recognition Probability of Set Objects,” Upravlyayushchie Sistemy i Mashiny, iss. 2, pp.8-12, 2005.
dc.relation.references[10] B. P. Rusyn, Structurally linguistic methods for patternt recognition in real time. Kyiv: Naukova dumka, 1986. (In Ukrainian).
dc.relation.references[11] Seema Asht, and Rajreshwar Dass. “Pattern Recognition Techniques: A Reviev,” International Journal of Computer Science and Telecomunication, vol.3, iss. 8, 2012.
dc.relation.references[12] C. Michael, V. Lepetit, S. Christoph, and F. Pascal, “BRIEF: Binary Robust Independent Elementary Features,” CVLab, EPFL, Lausanne, Switzerland, p. 14, 2009
dc.relation.references[13] Rahul Das Gupta, Jatindra K. Dash, and Sudipta Mukhopadhyay, “Rotation invariant textural feature extraction for image retrieval using eigen value analysis of intensity gradients and multi-resolution analysis,” Pattern Recognition, vol. 46, pp. 3256–3267, 2013.
dc.relation.references[14] Bin Xiao, Gang Lu, Tong Zhao, and Liang Xie, “Rotation, Scaling and Translation Invariant Texture Recognition by Bessel_Fourier moments,” Pattern recognition and image analysis, vol. 26, issue 2, pp. 302-308, 2016.
dc.relation.references[15] Frank Y.Shih, Image Processing and Pattern Recognition:Fundamental and Techniques. Wiley-IEEE Press, 2010.
dc.relation.references[16] Christopher M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
dc.relation.references[17] Bernhard Zeisl, Pierre Fite Georgel, Florian Schweiger, Eckehard G. Steinbach, and Nassir Navab, “Estimation of Location Uncertainty for Scale Invariant Feature Points,” BMVC. pp. 1-12. 2009.
dc.relation.references[18] Florian Schweiger, Bernhard Zeisl, Pierre Fite Georgel, Georg Schroth, Eckehard G. Steinbach, and Nassir Navab, “Maximum Detector Response Markers for SIFT and SURF,” VMV, pp. 145-154, 2009.
dc.relation.referencesen[1] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol.60, issue 2, pp. 91-110, 2004.
dc.relation.referencesen[2] Y. Ke and R. Sukthankar, "Pca-sift: A more distinctive representation for local image descriptors," Computer Vision and Pattern Recognition, pp. 506-513, 2004.
dc.relation.referencesen[3] Luo Juan, and Oubong Gwun, "A Comparison of SIFT, PCA-SIFT and SURF," International Journal of Image Processing, vol.3, iss. 4, pp.143-152, 2010.
dc.relation.referencesen[4] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski, "ORB: an efficient alternative to SIFT or SURF," 2011 IEEE International Conference on Computer Vision, pp.2564-2571, 2011.
dc.relation.referencesen[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "SURF: Speeded Up Robust Features," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, 2008.
dc.relation.referencesen[6] P. M. Panchal, S. R. Panchal, and S. K. Shah, "A Comparison of SIFT and SURF," International Journal of Innovative Research in Computer and Communication Engineering, vol. 1, no. 2, pp. 323-327, 2013.
dc.relation.referencesen[7] P. Sykora, P. Kamencay and R. Hudec, "Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map," AASRI Procedia, vol. 9, pp. 19-24, 2014.
dc.relation.referencesen[8] B. O. Kapustiy, B. P. Rusyn, and V. A. Tayanov, The pattern recognition systems in small data base. Lviv: SPOLOM, 2006. (in Ukrainian).
dc.relation.referencesen[9] B. O. Kapustiy, B. P. Rusyn, and V. A. Tajanov, "A new Approach to Determination of Correct Recognition Probability of Set Objects," Upravlyayushchie Sistemy i Mashiny, iss. 2, pp.8-12, 2005.
dc.relation.referencesen[10] B. P. Rusyn, Structurally linguistic methods for patternt recognition in real time. Kyiv: Naukova dumka, 1986. (In Ukrainian).
dc.relation.referencesen[11] Seema Asht, and Rajreshwar Dass. "Pattern Recognition Techniques: A Reviev," International Journal of Computer Science and Telecomunication, vol.3, iss. 8, 2012.
dc.relation.referencesen[12] C. Michael, V. Lepetit, S. Christoph, and F. Pascal, "BRIEF: Binary Robust Independent Elementary Features," CVLab, EPFL, Lausanne, Switzerland, p. 14, 2009
dc.relation.referencesen[13] Rahul Das Gupta, Jatindra K. Dash, and Sudipta Mukhopadhyay, "Rotation invariant textural feature extraction for image retrieval using eigen value analysis of intensity gradients and multi-resolution analysis," Pattern Recognition, vol. 46, pp. 3256–3267, 2013.
dc.relation.referencesen[14] Bin Xiao, Gang Lu, Tong Zhao, and Liang Xie, "Rotation, Scaling and Translation Invariant Texture Recognition by Bessel_Fourier moments," Pattern recognition and image analysis, vol. 26, issue 2, pp. 302-308, 2016.
dc.relation.referencesen[15] Frank Y.Shih, Image Processing and Pattern Recognition:Fundamental and Techniques. Wiley-IEEE Press, 2010.
dc.relation.referencesen[16] Christopher M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
dc.relation.referencesen[17] Bernhard Zeisl, Pierre Fite Georgel, Florian Schweiger, Eckehard G. Steinbach, and Nassir Navab, "Estimation of Location Uncertainty for Scale Invariant Feature Points," BMVC. pp. 1-12. 2009.
dc.relation.referencesen[18] Florian Schweiger, Bernhard Zeisl, Pierre Fite Georgel, Georg Schroth, Eckehard G. Steinbach, and Nassir Navab, "Maximum Detector Response Markers for SIFT and SURF," VMV, pp. 145-154, 2009.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage595
dc.citation.epage598
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Furgala_Y-Evaluation_of_Objects_Recognition_595-598.pdf243.5 kBAdobe PDFView/Open
2018_Furgala_Y-Evaluation_of_Objects_Recognition_595-598__COVER.png615.5 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.