Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52447
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMelnyk, Roman
dc.contributor.authorKalychak, Yurii
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:04:37Z-
dc.date.available2020-06-19T12:04:37Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationMelnyk R. Analysis of Metal Defects by Clustering the Sample and Distributed Cumulative Histogram / Roman Melnyk, Yurii Kalychak // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 563–567. — (Machine Vision and Pattern Recognition).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52447-
dc.description.abstractIn this paper the clustering algorithm was used to classify the regions of the metal sample with defects to determine their coordinates. The informative distributed cumulative histogram is proposed. To measure sizes and intensity of defects the IDCH image is transformed and clustered.
dc.format.extent563-567
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.relation.urihttp://www.weco.com/surface-inspection
dc.relation.urihttp://cilabs.kaist.ac.kr/research/image-analysis/defect-detection
dc.subjectimage intensity
dc.subjectsurface
dc.subjectdefects
dc.subjectclustering
dc.subjectpixel
dc.subjectsegmentation
dc.subjectinversion
dc.subjectdistributed cumulative histogram
dc.titleAnalysis of Metal Defects by Clustering the Sample and Distributed Cumulative Histogram
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages5
dc.identifier.citationenMelnyk R. Analysis of Metal Defects by Clustering the Sample and Distributed Cumulative Histogram / Roman Melnyk, Yurii Kalychak // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 563–567. — (Machine Vision and Pattern Recognition).
dc.relation.references[1] L.J. Wells, M. S. Shafae and J.A. Camelio, “Automated Surface Defect Detection Using High-Density Data,” J. Manuf. Sci. Eng., 138(7), Mar, 2016.
dc.relation.references[2] I. Ahn and Ch. Kim, "Finding Defects in Regular-Texture Images," 16th Korea-Japan Joint Workshop on Frontiers of Computer Vision, Hiroshima, Japan, pp. 478-480, Feb. 2010.
dc.relation.references[3] J. Choi and Ch. Kim, "Unsupervised Detection of Surface Defects: A Two-Step Approach," IEEE International Conference of Image Processing (ICIP), Orlando, USA, pp. 1037-1040, Sep. 2012.
dc.relation.references[4] L.A.O. Martins, F.L.C. Padua, and P.E.M. Almeida, “Automatic Detection of Surface Defects on Rolled Steel Using Computer Vision and Artificial Neural Networks IECON,” 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1081-1086, 2010.
dc.relation.references[5] S. Jahanbina, A.C. Bovika, E. Perezb, and D. Nair, “Automatic Inspection of Textured Surfaces by Support Vector Machines,” [Electronic resource] Link: ttps://live.ece.utexas.edu/publications
dc.relation.references[6] Wintriss defects gallery [Electronic resource] Link: http://www.weco.com/surface-inspection
dc.relation.references[7] Defect detection of various films [Electronic resource] Link: http://cilabs.kaist.ac.kr/research/image-analysis/defect-detection
dc.relation.references[8] V.H. Pham, and B.R. Lee, “An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm,” Vietnam Journal of Computer Science, vol. 2, iss. 1, pp. 25–33, February 2015,
dc.relation.references[9] K. Zheng, Y.-S. Chang, K.-H. Wang, and Y. Yao, “Thermographic clustering analysis for defect detection in CFRP structures,” Polymer Testing, vol. 49, pp. 73-81, February 2016.
dc.relation.references[10] R. Xu, and D. Wunsch, “Survey of clustering algorithms”, IEEE Transactions on Neural Networks, vol. 16, iss. 3, pp. 645 – 678, May 2005.
dc.relation.references[11] S. Naz, H. Majeed, and H. Irshad, “Image segmentation using fuzzy clustering: A survey,” 6th International Conference on Emerging Technologies (ICET), pp. 181 – 186, 18-19 Oct. 2010.
dc.relation.references[12] S. Thilagamani1 and N. Shanthi, “A Survey on Image Segmentation Through Clustering,” International Journal of Research and Reviews in Information Sciences, vol. 1, no. 1, pp. 14-17, March 2011.
dc.relation.references[13] Y. Yang, D. Xu, F.Nie, S. Yan, and Y. Zhuang, “Clustering Using Local Discriminant Models and Global Integration,” IEEE Transactions on Image Processing, vol. 19, iss. 10, pp. 2761 – 2773, Oct. 2010
dc.relation.referencesen[1] L.J. Wells, M. S. Shafae and J.A. Camelio, "Automated Surface Defect Detection Using High-Density Data," J. Manuf. Sci. Eng., 138(7), Mar, 2016.
dc.relation.referencesen[2] I. Ahn and Ch. Kim, "Finding Defects in Regular-Texture Images," 16th Korea-Japan Joint Workshop on Frontiers of Computer Vision, Hiroshima, Japan, pp. 478-480, Feb. 2010.
dc.relation.referencesen[3] J. Choi and Ch. Kim, "Unsupervised Detection of Surface Defects: A Two-Step Approach," IEEE International Conference of Image Processing (ICIP), Orlando, USA, pp. 1037-1040, Sep. 2012.
dc.relation.referencesen[4] L.A.O. Martins, F.L.C. Padua, and P.E.M. Almeida, "Automatic Detection of Surface Defects on Rolled Steel Using Computer Vision and Artificial Neural Networks IECON," 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1081-1086, 2010.
dc.relation.referencesen[5] S. Jahanbina, A.C. Bovika, E. Perezb, and D. Nair, "Automatic Inspection of Textured Surfaces by Support Vector Machines," [Electronic resource] Link: ttps://live.ece.utexas.edu/publications
dc.relation.referencesen[6] Wintriss defects gallery [Electronic resource] Link: http://www.weco.com/surface-inspection
dc.relation.referencesen[7] Defect detection of various films [Electronic resource] Link: http://cilabs.kaist.ac.kr/research/image-analysis/defect-detection
dc.relation.referencesen[8] V.H. Pham, and B.R. Lee, "An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm," Vietnam Journal of Computer Science, vol. 2, iss. 1, pp. 25–33, February 2015,
dc.relation.referencesen[9] K. Zheng, Y.-S. Chang, K.-H. Wang, and Y. Yao, "Thermographic clustering analysis for defect detection in CFRP structures," Polymer Testing, vol. 49, pp. 73-81, February 2016.
dc.relation.referencesen[10] R. Xu, and D. Wunsch, "Survey of clustering algorithms", IEEE Transactions on Neural Networks, vol. 16, iss. 3, pp. 645 – 678, May 2005.
dc.relation.referencesen[11] S. Naz, H. Majeed, and H. Irshad, "Image segmentation using fuzzy clustering: A survey," 6th International Conference on Emerging Technologies (ICET), pp. 181 – 186, 18-19 Oct. 2010.
dc.relation.referencesen[12] S. Thilagamani1 and N. Shanthi, "A Survey on Image Segmentation Through Clustering," International Journal of Research and Reviews in Information Sciences, vol. 1, no. 1, pp. 14-17, March 2011.
dc.relation.referencesen[13] Y. Yang, D. Xu, F.Nie, S. Yan, and Y. Zhuang, "Clustering Using Local Discriminant Models and Global Integration," IEEE Transactions on Image Processing, vol. 19, iss. 10, pp. 2761 – 2773, Oct. 2010
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage563
dc.citation.epage567
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Melnyk_R-Analysis_of_Metal_Defects_563-567.pdf320.48 kBAdobe PDFView/Open
2018_Melnyk_R-Analysis_of_Metal_Defects_563-567__COVER.png1.42 MBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.