Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52437
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYerokhin, Andriy
dc.contributor.authorSemenets, Valerii
dc.contributor.authorNechyporenko, Alina
dc.contributor.authorTuruta, Oleksii
dc.contributor.authorBabii, Andrii
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:04:30Z-
dc.date.available2020-06-19T12:04:30Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationF-transform 3D Point Cloud Filtering Algorithm / Andriy Yerokhin, Valerii Semenets, Alina Nechyporenko, Oleksii Turuta, Andrii Babii // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 524–527. — (Machine Vision and Pattern Recognition).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52437-
dc.description.abstractThe paper proposes a new 3D point cloud filtering approach using F-transform. We achieve this by usage of uniform fuzzy partitioning and applying direct and inverse discrete F-transform on a point cloud data. The point cloud was filtered in a depth domain. The performance of developed approach was compared with several common-used statisticalbased point cloud filtering methods.
dc.format.extent524-527
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.relation.urihttp://www-graphics
dc.subjectpoint cloud
dc.subjectfiltering
dc.subjectfuzzy methods
dc.subjectFtransform
dc.titleF-transform 3D Point Cloud Filtering Algorithm
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationKharkiv National University of Radio Electronics
dc.format.pages4
dc.identifier.citationenF-transform 3D Point Cloud Filtering Algorithm / Andriy Yerokhin, Valerii Semenets, Alina Nechyporenko, Oleksii Turuta, Andrii Babii // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 524–527. — (Machine Vision and Pattern Recognition).
dc.relation.references[1] J. Fu, D. Miao, W. Yu, S. Wang, Y. Lu, and S. Li, “Kinect-like depth data compression,” IEEE Transactions on Multimedia, vol. 15, no. 6, pp. 1340–1352, 2013.
dc.relation.references[2] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with microsoft kinect sensor: A review,” IEEE transactions on cybernetics, vol. 43, no. 5, pp. 1318–1334, 2013.
dc.relation.references[3] A. Nurunnabi, G. West, and D. Belton, “Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data,” Pattern Recognition, vol. 48, no. 4, pp. 1404–1419, 2015.
dc.relation.references[4] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, “A review of algorithms for filtering the 3D point cloud,” Signal Processing: Image Communication, vol. 57, pp. 103–112, 2017.
dc.relation.references[5] I. Perfilieva, “Fuzzy transforms: Theory and applications,” Fuzzy sets and systems, vol. 157, no. 8, pp. 993–1023, 2006.
dc.relation.references[6] L. A. Zadeh, “Fuzzy sets,” in Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996, pp. 394–432.
dc.relation.references[7] I. Perfilieva and R. Valášek, “Fuzzy transforms in removing noise,” in Computational Intelligence, Theory and Applications, Springer, 2005, pp. 221–230.
dc.relation.references[8] Y. Nie and K. E. Barner, “The fuzzy transformation and its applications in image processing,” IEEE Transactions on Image processing, vol. 15, no. 4, pp. 910–927, 2006.
dc.relation.references[9] K. Hirota and W. Pedrycz, “Fuzzy relational compression,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp. 407–415, 1999.
dc.relation.references[10] F. Di Martino, V. Loia, I. Perfilieva, and S. Sessa, “An image coding/decoding method based on direct and inverse fuzzy transforms,” International Journal of Approximate Reasoning, vol. 48, no. 1, pp. 110–131, 2008.
dc.relation.references[11] M. Levoy, J. Gerth, B. Curless, and K. Pull, “The Stanford 3D scanning repository,” URL http://www-graphics. stanford. edu/data/3dscanrep, 2005.
dc.relation.references[12] G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 311–318, 1994.
dc.relation.references[13] E. H. Ruspini, “A new approach to clustering,” Information and control, vol. 15, no. 1, pp. 22–32, 1969.
dc.relation.references[14] L. Stefanini, “F-transform with parametric generalized fuzzy partitions,” Fuzzy Sets and Systems, vol. 180, no. 1, pp. 98–120, 2011.
dc.relation.references[15] P. Vlašánek and I. Perfilieva, “Image reconstruction with usage of the F-Transform,” in International Joint Conference CISIS’12-ICEUTE’ 12-SOCO’ 12 Special Sessions, pp. 507–514, 2013.
dc.relation.referencesen[1] J. Fu, D. Miao, W. Yu, S. Wang, Y. Lu, and S. Li, "Kinect-like depth data compression," IEEE Transactions on Multimedia, vol. 15, no. 6, pp. 1340–1352, 2013.
dc.relation.referencesen[2] J. Han, L. Shao, D. Xu, and J. Shotton, "Enhanced computer vision with microsoft kinect sensor: A review," IEEE transactions on cybernetics, vol. 43, no. 5, pp. 1318–1334, 2013.
dc.relation.referencesen[3] A. Nurunnabi, G. West, and D. Belton, "Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data," Pattern Recognition, vol. 48, no. 4, pp. 1404–1419, 2015.
dc.relation.referencesen[4] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, "A review of algorithms for filtering the 3D point cloud," Signal Processing: Image Communication, vol. 57, pp. 103–112, 2017.
dc.relation.referencesen[5] I. Perfilieva, "Fuzzy transforms: Theory and applications," Fuzzy sets and systems, vol. 157, no. 8, pp. 993–1023, 2006.
dc.relation.referencesen[6] L. A. Zadeh, "Fuzzy sets," in Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996, pp. 394–432.
dc.relation.referencesen[7] I. Perfilieva and R. Valášek, "Fuzzy transforms in removing noise," in Computational Intelligence, Theory and Applications, Springer, 2005, pp. 221–230.
dc.relation.referencesen[8] Y. Nie and K. E. Barner, "The fuzzy transformation and its applications in image processing," IEEE Transactions on Image processing, vol. 15, no. 4, pp. 910–927, 2006.
dc.relation.referencesen[9] K. Hirota and W. Pedrycz, "Fuzzy relational compression," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp. 407–415, 1999.
dc.relation.referencesen[10] F. Di Martino, V. Loia, I. Perfilieva, and S. Sessa, "An image coding/decoding method based on direct and inverse fuzzy transforms," International Journal of Approximate Reasoning, vol. 48, no. 1, pp. 110–131, 2008.
dc.relation.referencesen[11] M. Levoy, J. Gerth, B. Curless, and K. Pull, "The Stanford 3D scanning repository," URL http://www-graphics. stanford. edu/data/3dscanrep, 2005.
dc.relation.referencesen[12] G. Turk and M. Levoy, "Zippered polygon meshes from range images," in Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 311–318, 1994.
dc.relation.referencesen[13] E. H. Ruspini, "A new approach to clustering," Information and control, vol. 15, no. 1, pp. 22–32, 1969.
dc.relation.referencesen[14] L. Stefanini, "F-transform with parametric generalized fuzzy partitions," Fuzzy Sets and Systems, vol. 180, no. 1, pp. 98–120, 2011.
dc.relation.referencesen[15] P. Vlašánek and I. Perfilieva, "Image reconstruction with usage of the F-Transform," in International Joint Conference CISIS’12-ICEUTE’ 12-SOCO’ 12 Special Sessions, pp. 507–514, 2013.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage524
dc.citation.epage527
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Yerokhin_A-F_transform_3D_Point_Cloud_524-527.pdf202.23 kBAdobe PDFView/Open
2018_Yerokhin_A-F_transform_3D_Point_Cloud_524-527__COVER.png565.44 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.