https://oldena.lpnu.ua/handle/ntb/52232
Title: | Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation |
Authors: | Melnyk, Anatoliy Kozak, Nazar |
Affiliation: | Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Melnyk A. Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 100–104. |
Bibliographic description (International): | Melnyk A. Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 100–104. |
Is part of: | Advances in Cyber-Physical Systems, 2 (4), 2019 Advances in Cyber-Physical Systems, 2 (4), 2019 |
Journal/Collection: | Advances in Cyber-Physical Systems |
Issue: | 2 |
Issue Date: | 26-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | GPGPU Hamming code hash function automatic parallelization |
Number of pages: | 5 |
Page range: | 100-104 |
Start page: | 100 |
End page: | 104 |
Abstract: | This article deals with the use of block code for the entire amount of data. A hash function is used to increase the number of errors that can be detected. The automatic parallelization of this code by using special means is considered. |
URI: | https://ena.lpnu.ua/handle/ntb/52232 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2019 © Melnyk A., Kozak N., 2019 |
References (Ukraine): | [1] History of Hamming Codes. Archived from the original on 2007-10-25. Retrieved 2008-04-03. [2] NVIDIA CUDA Programming Guide, Version 2.1, 2008 [3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs. In Proc. International Conference on Supercomputing, 2008. [4] N. Fujimoto. Fast Matrix-Vector Multiplication on GeForce 8800 GTX. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2008 [5] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High performance discrete Fourier transforms on graphics processors. In Proc. Supercomputing, 2008. [6] G. Ruetsch and P. Micikevicius. Optimize matrix transpose in CUDA. NVIDIA, 2009. [7] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDAlite: Reducing GPU programming Complexity, In Proc. Worksops on Languages and Compilers for Parallel Computing, 2008 [8] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra. In Proc. Supercomputing, 2008. [9] J. A. Stratton, S. S. Stone, and W. W. Hwu. MCUDA:An efficient implementation of CUDA kernels on multicores. IMPACT Technical Report IMPACT-08-01, UIUC, Feb. 2008. [10] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A. Stratton, and W. W. Hwu. Optimization space pruning for a multithreaded GPU. In Proc. International Symposium on Code Generation and Optimization, 2008. [11] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.W. Hwu. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008. [12] S. Hong and H. Kim. An analytical model for GPU architecture with memory-level and thread-level parallelism awareness. In Proc. International Symposium on Computer Architecture, 2009. |
References (International): | [1] History of Hamming Codes. Archived from the original on 2007-10-25. Retrieved 2008-04-03. [2] NVIDIA CUDA Programming Guide, Version 2.1, 2008 [3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs. In Proc. International Conference on Supercomputing, 2008. [4] N. Fujimoto. Fast Matrix-Vector Multiplication on GeForce 8800 GTX. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2008 [5] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High performance discrete Fourier transforms on graphics processors. In Proc. Supercomputing, 2008. [6] G. Ruetsch and P. Micikevicius. Optimize matrix transpose in CUDA. NVIDIA, 2009. [7] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDAlite: Reducing GPU programming Complexity, In Proc. Worksops on Languages and Compilers for Parallel Computing, 2008 [8] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra. In Proc. Supercomputing, 2008. [9] J. A. Stratton, S. S. Stone, and W. W. Hwu. MCUDA:An efficient implementation of CUDA kernels on multicores. IMPACT Technical Report IMPACT-08-01, UIUC, Feb. 2008. [10] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A. Stratton, and W. W. Hwu. Optimization space pruning for a multithreaded GPU. In Proc. International Symposium on Code Generation and Optimization, 2008. [11] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.W. Hwu. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008. [12] S. Hong and H. Kim. An analytical model for GPU architecture with memory-level and thread-level parallelism awareness. In Proc. International Symposium on Computer Architecture, 2009. |
Content type: | Article |
Appears in Collections: | Advances In Cyber-Physical Systems. – 2019. – Vol. 4, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
19v4n2_Melnyk_A-Data_Correction_Using_Hamming_100-104.pdf | 491.98 kB | Adobe PDF | View/Open | |
19v4n2_Melnyk_A-Data_Correction_Using_Hamming_100-104__COVER.png | 1.16 MB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.