Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorКузьменко, Е. Д.
dc.contributor.authorМаксимчук, В. Ю.
dc.contributor.authorБагрій, С. М.
dc.contributor.authorСапужак, О. Я.
dc.contributor.authorЧепурний, І. В.
dc.contributor.authorДещиця, С. А.
dc.contributor.authorДзьоба, У. О.
dc.contributor.authorKuzmenko, E. D.
dc.contributor.authorMaksymchuk, V. Yu.
dc.contributor.authorBagriy, S. M.
dc.contributor.authorSapuzhak, O. Ya.
dc.contributor.authorChepurnyi, I. V.
dc.contributor.authorDeshchytsya, S. A.
dc.contributor.authorDzoba, U. O.
dc.date.accessioned2020-06-14T20:25:32Z-
dc.date.available2020-06-14T20:25:32Z-
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.identifier.citationIntegration of electric prospectingmethods for forecasting the subsidence and sinkholes within the salt deposits in the Precarpathian area / E. D. Kuzmenko, V. Yu. Maksymchuk, S. M. Bagriy, O. Ya. Sapuzhak, I. V. Chepurnyi, S. A. Deshchytsya, U. O. Dzoba // Geodynamics : SCIENTIFIC JOURNAL. — Lviv : Lviv Politechnic Publishing House, 2019. — No 2(27). — P. 54–65.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52223-
dc.description.abstractМета. Метою роботи є дослідження ефективності комплексу методів природного імпульсного електромагнітного поля Землі (ПІЕМПЗ) та зондувань становленням електромагнітного поля (ЗС) для попередньої оцінки ступеня стабільності гірничих масивів у межах родовищ калійних солей Передкарпаття, а також прогнозування розвитку деформаційних процесів у приповерховому шарі геологічного середовища. Методика. Проведення площівних та профільних спостережень методами ПІЕМПЗ та ЗС на території шахтних полів родовищ калійних солей та побудова моделей геоелектричних розрізів, визначення зон з аномальними значеннями електричної провідності та інтенсивності природного електромагнітного випромінювання. Результати. За результатами профільних електрометричних методів (ЗС) та площівних спостережень ПІЕМПЗ на території шахтного поля рудника № 2 Стебницького родовища калійних солей виявлено та оконтурено зони аномальних значень електропровідності та аномалії інтенсивності електромагнітного випромінювання. На основі комплексної інтерпретації виділено зони підвищеної карстопровальної небезпеки на ділянці автодороги Трускавець – Пісочне. Зроблено висновок про високу інформативність та ефективність комплексу методів ЗС і ПІЕМПЗ для оцінки ступеня карстопровальних процесів у зонах розроблення корисних копалин. Наукова новизна. Полягає в експериментально підтвердженій ефективності та високій інформативності комплексного застосування методів ЗС і ПІЕМПЗ для вивчення стану геологічного середовища, охопленого карстопровальними процесами у межах родовищ калійних солей. Практична значущість. Запропонований комплекс геофізичних методів ЗС і ПІЕМПЗ дає змогу з високою достовірністю спрогнозувати зони ймовірних карстових провалів та здійснити запобіжні заходи для мінімізації наслідків розвитку карстопровальних геологічних ситуацій.
dc.description.abstractObjective. The aim of this work is to study the efficiency of combining such methods as: investigation of the natural pulse electromagnetic field of Earth (NIEMFE) and transient electromagnetics (TEM) for the preliminary assessment of the degree of stability of mining fields within the deposits of potassium salts in the Precarpathian area, as well as forecasting the development of deformation processes in the near-surface layer of the geological environment. Methodology. Conducting areal and profile observations using NIEMFE and TEM techniques in the territory of the mining fields of potassium salts deposits and constructing the models of geoelectric sections; determination of zones with abnormal values of electrical conductivity and intensity of natural electromagnetic radiation. Results. According to the results of profile TEM and areal observations of NIEMFE on the mining field No. 2 of the Stebnytsky deposit of potassium salts, zones of abnormal electrical conductivity and anomalies in electromagnetic radiation intensity were detected and outlined. On the basis of the complex interpretation, the areas of increased karst sinkhole danger on a certain part of the Truskavets – Pisochnaya highway were singled out. The conclusion is that a set of methods NIEMFE and TEM for assessing the degree of karst sinkhole processes in the areas of mining activities is highly informative and efficient. Scientific novelty. The scientific novelty lies in the experimentally confirmed efficiency and high informativeness of the complex application of TEM and NIEMFE methods for studying the state of the geological environment endangered by karst deformation processes within the deposits of potassium salts. Practical significance. The proposed set of geophysical methods of TEM and NIEMFE allows predicting with high reliability the areas of probable karst sinkhole formation, which will allow taking preventive measures to minimize the consequences of karst deformation processes of a geological nature upon human settlement.
dc.format.extent54-65
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка : науковий журнал, 2(27), 2019
dc.relation.ispartofGeodynamics : SCIENTIFIC JOURNAL, 2(27), 2019
dc.subjectСтебницьке родовище
dc.subjectкалійна сіль
dc.subjectсуфозійно-фільтраційний процес
dc.subjectелектророзвідка
dc.subjectгіпсо-глиниста шапка
dc.subjectкарст
dc.subjectдепресія
dc.subjectStebnytsky deposit
dc.subjectpotassium salt
dc.subjectperfusion-filtration process
dc.subjectelectrical exploration
dc.subjectgypsumclay cap
dc.subjectkarst
dc.subjectdepression
dc.titleIntegration of electric prospectingmethods for forecasting the subsidence and sinkholes within the salt deposits in the Precarpathian area
dc.title.alternativeКомплексування методів електророзвідки у задачах прогнозування техногенних просідань і провалів на родовищах солі Передкарпаття
dc.typeArticle
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Kuzmenko E. D., Maksymchuk V. Yu., Bagriy S. M., Sapuzhak O. Ya., Chepurnyi I. V., Deshchytsya S. A., Dzoba U. O.
dc.contributor.affiliationКарпатське відділення Інституту геофізики ім. С. І. Субботіна НАН України
dc.contributor.affiliationІвано-Франківський національний технічний університет нафти і газу
dc.contributor.affiliationCarpathian branch of Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine
dc.contributor.affiliationIvano-Frankivsk National Technical University of Oil and Gas
dc.format.pages12
dc.identifier.citationenIntegration of electric prospectingmethods for forecasting the subsidence and sinkholes within the salt deposits in the Precarpathian area / E. D. Kuzmenko, V. Yu. Maksymchuk, S. M. Bagriy, O. Ya. Sapuzhak, I. V. Chepurnyi, S. A. Deshchytsya, U. O. Dzoba // Geodynamics : SCIENTIFIC JOURNAL. — Lviv : Lviv Politechnic Publishing House, 2019. — No 2(27). — P. 54–65.
dc.relation.referencesAbaturova, I. V., Savintsev, I. A., Borisikhina, O. A.,
dc.relation.referencesKozlov, V. S., Shevaldin, D. A., Balakin, V. Y.
dc.relation.references(2017). Evaluation of engineering-geological
dc.relation.referencesconditions of the rock mass in mining deposits of
dc.relation.referencesunderground way, Engineering Geophysics 2017,
dc.relation.referencesDOI: 10.3997/2214-4609.201700375
dc.relation.referencesBagriy, S. M. (2016). Geophysical monitoring of
dc.relation.referencesgeological environment within the Ukrainian
dc.relation.referencespotassium deposits (for example of Kalush-Holyn
dc.relation.referencesdeposit) (Phd. dissertation, Ivano-Frankivsk
dc.relation.referencesNational Technical University of oil and gas).
dc.relation.referencesBurak, K. O., Kuzmenko, E. D., Bagriy, S. M.,
dc.relation.referencesGrynishak, M. Ya., Melnychenko, G. G.,
dc.relation.referencesMykhailyshyn, V. P., & Kovtun, V. M. (2014).
dc.relation.referencesFeatures of geodetic monitoring and forecasting of
dc.relation.referencesgeotechnogenic dynamics at mine fields of
dc.relation.referencespotassium deposits. Journal of Geodesy and
dc.relation.referencesCartography, (5), 12–18.
dc.relation.referencesDeshchytsya, S. A., Pidvirny, O. I., Romanyuk, O. I.,
dc.relation.referencesSadovyi, Yu. V., Kolyadenko, V. V., Savkiv, L. G.,
dc.relation.references& Myshchyshyn, Yu. S. (2016). Evaluation of the
dc.relation.referencesstate of the ecologically problematic mining and
dc.relation.referencesindustrial objects in Kalush region by electromagnetic methods and their monitoring. Science
dc.relation.referencesand innovation, 12(5), 47–59.
dc.relation.referencesDiakiv, V. О., Dranovska, А. V., Khevpa, Z. Z. Failure of September 30, 2017, over mine No. 2 of
dc.relation.referencesStebnitske GHP POLIMINERAL: causes,
dc.relation.referencesconsequences and current state (based on the
dc.relation.referencesresults of material-balance modeling and
dc.relation.referencesmonitoring observations), Subsoil use in ukraine.
dc.relation.referencesProspects for investment. Materials fifth
dc.relation.referencesscientific-practical conference (Ukraine, Truskavets, 8–12 October 2018). State Commission of
dc.relation.referencesUkraine for Mineral Resources. (2),
dc.relation.referencesp. 103–115.
dc.relation.referencesFrid, V. (1997). Electromagnetic radiation method for
dc.relation.referencesrock and gas outburst forecast. Journal of Applied
dc.relation.referencesGeophysics, 38(2), 97–104. doi:10.1016/S0926-9851(97)00017-7.
dc.relation.referencesGaidin А.М. (2018) Save Solotvyno. Subsoil use in
dc.relation.referencesukraine. Prospects for investment. Materials fifth
dc.relation.referencesscientific-practical conference (Ukraine, Truskavets, 8–12 October 2018). State Commission of
dc.relation.referencesUkraine for Mineral Resources . (2), p. 57–64.
dc.relation.referencesGaidin, А. М., & Rudko, G. I. (2016). Technogenic
dc.relation.referenceskarst.
dc.relation.referencesGaidin, А. М., Diakiv, V. О., & Chikova, І. V.
dc.relation.references(2014). Deformation of the Earth's surface in the
dc.relation.referencesarea of activity of the potash mines in Stebnik.
dc.relation.referencesEcological Safety and Balanced Use of Resources,
dc.relation.references(2 (10)), 112–120.
dc.relation.referencesGondwe, B. R. N., Lerer, S., Stisen, S., Marín, L.,
dc.relation.referencesRebolledo-Vieyra, M., Merediz-Alonso, G., &
dc.relation.referencesBauer-Gottwein, P. (2010). Hydrogeology of the
dc.relation.referencessouth-eastern yucatan peninsula: New insights from
dc.relation.referenceswater level measurements, geochemistry, geophysics
dc.relation.referencesand remote sensing. Journal of Hydrology, 389(1–2), 1–17. doi:10.1016/j.jhydrol.2010.04.044.
dc.relation.referencesGreiling, R. O., & Obermeyer, H. (2010). Natural
dc.relation.referenceselectromagnetic radiation (EMR) and its
dc.relation.referencesapplication in structural geology and neotectonics.
dc.relation.referencesJournal of the Geological Society of India, 75(1), 278–288.
dc.relation.referencesKryzhanivskyi, E. I., Kuzmenko, E. D., Palijchuk, M. V.,
dc.relation.references& Baranenko, B. T. (2008). Technogenic situation
dc.relation.referencesin the region of Kalush industrial area. Scientific
dc.relation.referencesbulletin Ivano-Frankivsk National Technical
dc.relation.referencesUniversity of Oil and Gas, (2), 5–11.
dc.relation.referencesKuzmenko, E., Bagriy, S., Chepurnyi, I. V., &
dc.relation.referencesShtohryn, M. (2017). Estimation of hazards of the
dc.relation.referencessurface deformations of rocks within stebnyk
dc.relation.referencespotassium salt deposit area by method ENPEMF.
dc.relation.referencesGeodynamics, (22), 98–113. DOI: 10.23939/jgd2017.01.098
dc.relation.referencesKuzmenko, E. D., Bahrii, S. M., & Dzoba, U. O.
dc.relation.references(2018). The depth range of the Earth's natural
dc.relation.referencespulse electromagnetic field (or ENPEMF). Journal
dc.relation.referencesof Geology, Geography and Geoecology, 27(3), 466–477. DOI: 10.15421/111870.
dc.relation.referencesMaksymchuk V., Sapuzhak O., Deshchytsya S.,
dc.relation.referencesLadanivskyi B., Romanyuk O., Kolyadenko V.
dc.relation.references(2019). Investigation of karstic processes on the
dc.relation.referencesterritory of Stebnik deposit of potassium salts by
dc.relation.referencesmethods of electric prospecting, Abstracts of the 24th International Scientific Conference
dc.relation.references“Geoforum-2019» (10–12.04.2019), Lviv, NU
dc.relation.references„Lvivska politekhnika”, p. 37–38.
dc.relation.referencesMordvinov, I.S., Stasyuk, V.M., Pakshyn, M.Yu.,
dc.relation.referencesLyaska, I. I. (2018) Monitoring of vertical
dc.relation.referencesdisplacements of the territory of the MCE
dc.relation.references“POLIMINERALЄ with the use of satellite
dc.relation.referencesinterferometric radar measurements, Subsoil use in
dc.relation.referencesukraine. Prospects for investment. Materials fifth
dc.relation.referencesscientific-practical conference (Ukraine,
dc.relation.referencesTruskavets, 8–12 October 2018). State
dc.relation.referencesCommission of Ukraine for Mineral Resources.
dc.relation.references(2), p. 94–102.
dc.relation.referencesObermeyer, H., Lauterbach, M., & Krauter, E. (2001,
dc.relation.referencesJune). Monitoring landslides with natural
dc.relation.referenceselectromagnetic pulse radiation. In international
dc.relation.referencesconference on landslides (pp. 297–304).
dc.relation.referencesOgilvi, А. А. (1990). Fundamentals of Engineering
dc.relation.referencesGeophysics: Textbook. Nedra, 501 p.
dc.relation.referencesPavliuk, V. I. (2016). Natural factors of activation the
dc.relation.referencesexogenous processes at technogenicallymodified
dc.relation.referencessites of the salt deposits of the Precarpathians.
dc.relation.referencesGeodynamics, (1), 94–105.
dc.relation.referencesPueyo-Anchuela, Ó., Casas-Sainz, A. M., Soriano, M. A.,
dc.relation.references& Pocoví-Juan, A. (2010). A geophysical survey
dc.relation.referencesroutine for the detection of doline areas in the
dc.relation.referencessurroundings of zaragoza (NE spain). Engineering
dc.relation.referencesGeology, 114(3–4), 382–396. doi: 10.1016/
dc.relation.referencesj.enggeo.2010.05.015.
dc.relation.referencesRabinovitch, A., Frid, V., Bahat, D., & Shava, B.
dc.relation.references(1996). Emission of electromagnetic radiation by
dc.relation.referencesrock fracturing. Zeitschrift fur Geologische
dc.relation.referencesWissenschaften, 24, 361–368.
dc.relation.referencesShurovskyi, A., Anikeev, S., Shamotko, V.,
dc.relation.referencesDeshchytsya, S., Nikolaienko, О., & Popluiko, А.
dc.relation.references(2012). Geophysical monitoring of environmentally hazardous geological processes in the
dc.relation.referencesKalush agglomeration, Mineral Resources of
dc.relation.referencesUkraine, (2), 31–38.
dc.relation.referencesShurovskyi, A. D., Anikeev, S. G., Shamotko, V. Y.,
dc.relation.references& Deshchytsya, S. A. (2013). Geophysical
dc.relation.referencesmonitoring of the geological environment to solve
dc.relation.referencesenvironmental problems within the agglomeration
dc.relation.referencesof Kalush. Mining journal, (12), 99–104.
dc.relation.referencesenAbaturova, I. V., Savintsev, I. A., Borisikhina, O. A.,
dc.relation.referencesenKozlov, V. S., Shevaldin, D. A., Balakin, V. Y.
dc.relation.referencesen(2017). Evaluation of engineering-geological
dc.relation.referencesenconditions of the rock mass in mining deposits of
dc.relation.referencesenunderground way, Engineering Geophysics 2017,
dc.relation.referencesenDOI: 10.3997/2214-4609.201700375
dc.relation.referencesenBagriy, S. M. (2016). Geophysical monitoring of
dc.relation.referencesengeological environment within the Ukrainian
dc.relation.referencesenpotassium deposits (for example of Kalush-Holyn
dc.relation.referencesendeposit) (Phd. dissertation, Ivano-Frankivsk
dc.relation.referencesenNational Technical University of oil and gas).
dc.relation.referencesenBurak, K. O., Kuzmenko, E. D., Bagriy, S. M.,
dc.relation.referencesenGrynishak, M. Ya., Melnychenko, G. G.,
dc.relation.referencesenMykhailyshyn, V. P., & Kovtun, V. M. (2014).
dc.relation.referencesenFeatures of geodetic monitoring and forecasting of
dc.relation.referencesengeotechnogenic dynamics at mine fields of
dc.relation.referencesenpotassium deposits. Journal of Geodesy and
dc.relation.referencesenCartography, (5), 12–18.
dc.relation.referencesenDeshchytsya, S. A., Pidvirny, O. I., Romanyuk, O. I.,
dc.relation.referencesenSadovyi, Yu. V., Kolyadenko, V. V., Savkiv, L. G.,
dc.relation.referencesen& Myshchyshyn, Yu. S. (2016). Evaluation of the
dc.relation.referencesenstate of the ecologically problematic mining and
dc.relation.referencesenindustrial objects in Kalush region by electromagnetic methods and their monitoring. Science
dc.relation.referencesenand innovation, 12(5), 47–59.
dc.relation.referencesenDiakiv, V. O., Dranovska, A. V., Khevpa, Z. Z. Failure of September 30, 2017, over mine No. 2 of
dc.relation.referencesenStebnitske GHP POLIMINERAL: causes,
dc.relation.referencesenconsequences and current state (based on the
dc.relation.referencesenresults of material-balance modeling and
dc.relation.referencesenmonitoring observations), Subsoil use in ukraine.
dc.relation.referencesenProspects for investment. Materials fifth
dc.relation.referencesenscientific-practical conference (Ukraine, Truskavets, 8–12 October 2018). State Commission of
dc.relation.referencesenUkraine for Mineral Resources. (2),
dc.relation.referencesenp. 103–115.
dc.relation.referencesenFrid, V. (1997). Electromagnetic radiation method for
dc.relation.referencesenrock and gas outburst forecast. Journal of Applied
dc.relation.referencesenGeophysics, 38(2), 97–104. doi:10.1016/S0926-9851(97)00017-7.
dc.relation.referencesenGaidin A.M. (2018) Save Solotvyno. Subsoil use in
dc.relation.referencesenukraine. Prospects for investment. Materials fifth
dc.relation.referencesenscientific-practical conference (Ukraine, Truskavets, 8–12 October 2018). State Commission of
dc.relation.referencesenUkraine for Mineral Resources . (2), p. 57–64.
dc.relation.referencesenGaidin, A. M., & Rudko, G. I. (2016). Technogenic
dc.relation.referencesenkarst.
dc.relation.referencesenGaidin, A. M., Diakiv, V. O., & Chikova, I. V.
dc.relation.referencesen(2014). Deformation of the Earth's surface in the
dc.relation.referencesenarea of activity of the potash mines in Stebnik.
dc.relation.referencesenEcological Safety and Balanced Use of Resources,
dc.relation.referencesen(2 (10)), 112–120.
dc.relation.referencesenGondwe, B. R. N., Lerer, S., Stisen, S., Marín, L.,
dc.relation.referencesenRebolledo-Vieyra, M., Merediz-Alonso, G., &
dc.relation.referencesenBauer-Gottwein, P. (2010). Hydrogeology of the
dc.relation.referencesensouth-eastern yucatan peninsula: New insights from
dc.relation.referencesenwater level measurements, geochemistry, geophysics
dc.relation.referencesenand remote sensing. Journal of Hydrology, 389(1–2), 1–17. doi:10.1016/j.jhydrol.2010.04.044.
dc.relation.referencesenGreiling, R. O., & Obermeyer, H. (2010). Natural
dc.relation.referencesenelectromagnetic radiation (EMR) and its
dc.relation.referencesenapplication in structural geology and neotectonics.
dc.relation.referencesenJournal of the Geological Society of India, 75(1), 278–288.
dc.relation.referencesenKryzhanivskyi, E. I., Kuzmenko, E. D., Palijchuk, M. V.,
dc.relation.referencesen& Baranenko, B. T. (2008). Technogenic situation
dc.relation.referencesenin the region of Kalush industrial area. Scientific
dc.relation.referencesenbulletin Ivano-Frankivsk National Technical
dc.relation.referencesenUniversity of Oil and Gas, (2), 5–11.
dc.relation.referencesenKuzmenko, E., Bagriy, S., Chepurnyi, I. V., &
dc.relation.referencesenShtohryn, M. (2017). Estimation of hazards of the
dc.relation.referencesensurface deformations of rocks within stebnyk
dc.relation.referencesenpotassium salt deposit area by method ENPEMF.
dc.relation.referencesenGeodynamics, (22), 98–113. DOI: 10.23939/jgd2017.01.098
dc.relation.referencesenKuzmenko, E. D., Bahrii, S. M., & Dzoba, U. O.
dc.relation.referencesen(2018). The depth range of the Earth's natural
dc.relation.referencesenpulse electromagnetic field (or ENPEMF). Journal
dc.relation.referencesenof Geology, Geography and Geoecology, 27(3), 466–477. DOI: 10.15421/111870.
dc.relation.referencesenMaksymchuk V., Sapuzhak O., Deshchytsya S.,
dc.relation.referencesenLadanivskyi B., Romanyuk O., Kolyadenko V.
dc.relation.referencesen(2019). Investigation of karstic processes on the
dc.relation.referencesenterritory of Stebnik deposit of potassium salts by
dc.relation.referencesenmethods of electric prospecting, Abstracts of the 24th International Scientific Conference
dc.relation.referencesen"Geoforum-2019" (10–12.04.2019), Lviv, NU
dc.relation.referencesen"Lvivska politekhnika", p. 37–38.
dc.relation.referencesenMordvinov, I.S., Stasyuk, V.M., Pakshyn, M.Yu.,
dc.relation.referencesenLyaska, I. I. (2018) Monitoring of vertical
dc.relation.referencesendisplacements of the territory of the MCE
dc.relation.referencesen"POLIMINERALIe with the use of satellite
dc.relation.referenceseninterferometric radar measurements, Subsoil use in
dc.relation.referencesenukraine. Prospects for investment. Materials fifth
dc.relation.referencesenscientific-practical conference (Ukraine,
dc.relation.referencesenTruskavets, 8–12 October 2018). State
dc.relation.referencesenCommission of Ukraine for Mineral Resources.
dc.relation.referencesen(2), p. 94–102.
dc.relation.referencesenObermeyer, H., Lauterbach, M., & Krauter, E. (2001,
dc.relation.referencesenJune). Monitoring landslides with natural
dc.relation.referencesenelectromagnetic pulse radiation. In international
dc.relation.referencesenconference on landslides (pp. 297–304).
dc.relation.referencesenOgilvi, A. A. (1990). Fundamentals of Engineering
dc.relation.referencesenGeophysics: Textbook. Nedra, 501 p.
dc.relation.referencesenPavliuk, V. I. (2016). Natural factors of activation the
dc.relation.referencesenexogenous processes at technogenicallymodified
dc.relation.referencesensites of the salt deposits of the Precarpathians.
dc.relation.referencesenGeodynamics, (1), 94–105.
dc.relation.referencesenPueyo-Anchuela, Ó., Casas-Sainz, A. M., Soriano, M. A.,
dc.relation.referencesen& Pocoví-Juan, A. (2010). A geophysical survey
dc.relation.referencesenroutine for the detection of doline areas in the
dc.relation.referencesensurroundings of zaragoza (NE spain). Engineering
dc.relation.referencesenGeology, 114(3–4), 382–396. doi: 10.1016/
dc.relation.referencesenj.enggeo.2010.05.015.
dc.relation.referencesenRabinovitch, A., Frid, V., Bahat, D., & Shava, B.
dc.relation.referencesen(1996). Emission of electromagnetic radiation by
dc.relation.referencesenrock fracturing. Zeitschrift fur Geologische
dc.relation.referencesenWissenschaften, 24, 361–368.
dc.relation.referencesenShurovskyi, A., Anikeev, S., Shamotko, V.,
dc.relation.referencesenDeshchytsya, S., Nikolaienko, O., & Popluiko, A.
dc.relation.referencesen(2012). Geophysical monitoring of environmentally hazardous geological processes in the
dc.relation.referencesenKalush agglomeration, Mineral Resources of
dc.relation.referencesenUkraine, (2), 31–38.
dc.relation.referencesenShurovskyi, A. D., Anikeev, S. G., Shamotko, V. Y.,
dc.relation.referencesen& Deshchytsya, S. A. (2013). Geophysical
dc.relation.referencesenmonitoring of the geological environment to solve
dc.relation.referencesenenvironmental problems within the agglomeration
dc.relation.referencesenof Kalush. Mining journal, (12), 99–104.
dc.citation.journalTitleГеодинаміка : науковий журнал
dc.citation.issue2(27)
dc.citation.spage54
dc.citation.epage65
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.subject.udc550.83
Appears in Collections:Геодинаміка. – 2019. – №2(27)

Files in This Item:
File Description SizeFormat 
2019n2_27__Kuzmenko_E_D-Integration_of_electric_54-65.pdf1.04 MBAdobe PDFView/Open
2019n2_27__Kuzmenko_E_D-Integration_of_electric_54-65__COVER.png574.97 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.