Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBodnia, Yevhen
dc.contributor.authorKozulia, Mariia
dc.coverage.temporal23-24 April 2020, Lviv, Ukraine
dc.date.accessioned2020-06-12T11:09:55Z-
dc.date.available2020-06-12T11:09:55Z-
dc.date.created2020-04-23
dc.date.issued2020-04-23
dc.identifier.citationBodnia Y. Handwriting Recognition Methods and Approaches / Yevhen Bodnia, Mariia Kozulia // Computational linguistics and intelligent systems : proceedings of the 4nd International conference, 23-24 April 2020, Lviv, Ukraine. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2 : Proceedings of the 4nd International conference, COLINS 2020. Workshop, Lviv, Ukraine April 23-24, 2020. — P. 251–253. — (Intelligent Systems).
dc.identifier.issn2523-4013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52150-
dc.description.abstractThe paper analyzes the existing methods and approaches for character recognition. The subject area and its problems are considered. The best method for solving the handwriting recognition task is the convolutional neural network method. Features of software implementation of convolutional neural network, implementation of data storage model for training are considered.
dc.format.extent251-253
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational linguistics and intelligent systems : proceedings of the 4nd International conference (2), 2020
dc.relation.urihttp://elartu.tntu.edu.ua/bitstream/lib/25615/1/%D0%9C%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%8F.pdf
dc.relation.urihttp://mirznanii.com/a/113307-2/istoriya-sistem-raspoznavaniya-obrazov-2
dc.relation.urihttps://ru.wikipedia.org/wiki/Генетический_алгоритм
dc.subjectCharacter recognition
dc.subjectneural network
dc.subjectrecognition methods
dc.subjectconvolutional network
dc.subjectdata models
dc.titleHandwriting Recognition Methods and Approaches
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.contributor.affiliationNational Technical University "Kharkiv Polytechnic Institute"
dc.format.pages3
dc.identifier.citationenBodnia Y. Handwriting Recognition Methods and Approaches / Yevhen Bodnia, Mariia Kozulia // Computational linguistics and intelligent systems : proceedings of the 4nd International conference, 23-24 April 2020, Lviv, Ukraine. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2 : Proceedings of the 4nd International conference, COLINS 2020. Workshop, Lviv, Ukraine April 23-24, 2020. — P. 251–253. — (Intelligent Systems).
dc.relation.references1. Добротвор І. Г., Стухляк П. Д., Микитишин А. Г., Митник М. М. Аналіз систем розпізнавання образів структури композитів: монографія URL: http://elartu.tntu.edu.ua/bitstream/lib/25615/1/%D0%9C%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%8F.pdf.
dc.relation.references2. Історія систем розпізнавання образів. URL: http://mirznanii.com/a/113307-2/istoriya-sistem-raspoznavaniya-obrazov-2.
dc.relation.references3. Генетичний алгоритм URL: https://ru.wikipedia.org/wiki/Генетический_алгоритм.
dc.relation.referencesen1. Dobrotvor I. H., Stukhliak P. D., Mykytyshyn A. H., Mytnyk M. M. Analiz system rozpiznavannia obraziv struktury kompozytiv: monograph URL: http://elartu.tntu.edu.ua/bitstream/lib/25615/1/%D0%9C%D0%BE%D0%BD%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%8F.pdf.
dc.relation.referencesen2. Istoriia system rozpiznavannia obraziv. URL: http://mirznanii.com/a/113307-2/istoriya-sistem-raspoznavaniya-obrazov-2.
dc.relation.referencesen3. Henetichnii alhoritm URL: https://ru.wikipedia.org/wiki/Heneticheskii_alhoritm.
dc.citation.spage251
dc.citation.epage253
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Computational linguistics and intelligent systems. – 2020 р.

Files in This Item:
File Description SizeFormat 
2020v2_Bodnia_Y-Handwriting_Recognition_251-253.pdf565.3 kBAdobe PDFView/Open
2020v2_Bodnia_Y-Handwriting_Recognition_251-253__COVER.png266.66 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.