Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52139
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShepeliev, Oleksandr
dc.contributor.authorBilova, Mariia
dc.coverage.temporal23-24 April 2020, Lviv, Ukraine
dc.date.accessioned2020-06-12T11:09:47Z-
dc.date.available2020-06-12T11:09:47Z-
dc.date.created2020-04-23
dc.date.issued2020-04-23
dc.identifier.citationShepeliev O. State Estimation of Forest condition in the Event of Fire, Based on Satellite Image Processing / Oleksandr Shepeliev, Mariia Bilova // Computational linguistics and intelligent systems : proceedings of the 4nd International conference, 23-24 April 2020, Lviv, Ukraine. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2 : Proceedings of the 4nd International conference, COLINS 2020. Workshop, Lviv, Ukraine April 23-24, 2020. — P. 228–229. — (Intelligent Systems).
dc.identifier.issn2523-4013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52139-
dc.description.abstractThe relevancy of the work connected with the need to improve existing software designed to assess the condition of the forest in the event of a fire. The task of responding quickly and assessing the state of forests in recent years has become a very important factor, since the economic and environmental impacts of forests can cause irreparable damage to the state and the planet. Geoinformation systems (GIS) can be used to achieve this goal. Most Earth observation applications involve converting multi-channel image data into thematic maps using classification procedures. This research is an attempt to automate the process of extracting feature boundaries from satellite imagery.
dc.format.extent228-229
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational linguistics and intelligent systems : proceedings of the 4nd International conference (2), 2020
dc.subjectComputer vision
dc.subjectGIS
dc.subjectFeature
dc.subjectExtraction
dc.subjectImagery
dc.subjectSegmentation
dc.titleState Estimation of Forest condition in the Event of Fire, Based on Satellite Image Processing
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.contributor.affiliationNational Technical University «Kharkiv Polytechnic Institute»
dc.format.pages2
dc.identifier.citationenShepeliev O. State Estimation of Forest condition in the Event of Fire, Based on Satellite Image Processing / Oleksandr Shepeliev, Mariia Bilova // Computational linguistics and intelligent systems : proceedings of the 4nd International conference, 23-24 April 2020, Lviv, Ukraine. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2 : Proceedings of the 4nd International conference, COLINS 2020. Workshop, Lviv, Ukraine April 23-24, 2020. — P. 228–229. — (Intelligent Systems).
dc.relation.references1. Bausys, R.; Kazakeviciute-Januskeviciene, G.; Cavallaro, F.; Usovaite, A. Algorithm Selection for Edge Detection in Satellite Images by Neutrosophic WASPAS Method. Sustainability 2020, 12, 548.
dc.relation.references2. Mohammad D. Hossain, Dongmei Chen, Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective, ISPRS Journal of Photogrammetry and Remote Sensing,Volume 150,2019,Pages 115-134,ISSN 0924-2716.
dc.relation.references3. Comaniciu, D. and Meer, P., 1997. Robust analysis of feature spaces: colorimage segmentation. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ‘97), IEEE Computer Society, Washington, DC, USA, pp.750–755.
dc.relation.references4. Gold, C. M., 1999. Crust and anti-crust: A one-step boundary and skeleton extraction algorithm. In: Symposium on Computational Geometry, ACM Press, New York, NY, USA, pp. 189–196.
dc.relation.referencesen1. Bausys, R.; Kazakeviciute-Januskeviciene, G.; Cavallaro, F.; Usovaite, A. Algorithm Selection for Edge Detection in Satellite Images by Neutrosophic WASPAS Method. Sustainability 2020, 12, 548.
dc.relation.referencesen2. Mohammad D. Hossain, Dongmei Chen, Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective, ISPRS Journal of Photogrammetry and Remote Sensing,Volume 150,2019,Pages 115-134,ISSN 0924-2716.
dc.relation.referencesen3. Comaniciu, D. and Meer, P., 1997. Robust analysis of feature spaces: colorimage segmentation. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ‘97), IEEE Computer Society, Washington, DC, USA, pp.750–755.
dc.relation.referencesen4. Gold, C. M., 1999. Crust and anti-crust: A one-step boundary and skeleton extraction algorithm. In: Symposium on Computational Geometry, ACM Press, New York, NY, USA, pp. 189–196.
dc.citation.spage228
dc.citation.epage229
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Computational linguistics and intelligent systems. – 2020 р.

Files in This Item:
File Description SizeFormat 
2020v2_Shepeliev_O-State_Estimation_of_Forest_228-229.pdf383.05 kBAdobe PDFView/Open
2020v2_Shepeliev_O-State_Estimation_of_Forest_228-229__COVER.png294.58 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.