Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/49617
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuzio, Igor
dc.contributor.authorVasyliv, Bogdan
dc.contributor.authorKorendiy, Vitaliy
dc.contributor.authorBorovets, Volodymyr
dc.contributor.authorPodhurska, Viktoriya
dc.date.accessioned2020-05-11T09:02:51Z-
dc.date.available2020-05-11T09:02:51Z-
dc.date.created2019-03-20
dc.date.issued2019-03-20
dc.identifier.citationSubstantiation of the shape of a solid oxide fuel cell anode using the stress-strain and shape-dependent crack deceleration approaches / Igor Kuzio, Bogdan Vasyliv, Vitaliy Korendiy, Volodymyr Borovets, Viktoriya Podhurska // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 1. — P. 29–38.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49617-
dc.description.abstractStress and strain distributions in the YSZ–NiO spheroidal shape anode-substrate for a solid oxide fuel cell (SOFC) under pressure of operating environment were calculated using the finite element analysis. The features were then compared with ones of the cylindrical shape anode. The radii ranges for the cylindrical and spheroidal (segments of a sphere) parts of the anode ensuring its improved deformation resistance and more uniform stress distribution were suggested. Based on the calculations, an anode of the cylindrical shape with top and bottom convex surfaces (a spheroidal shape anode), with the spheroid to cylinder radii ratio R / Rc in the range from 5 to 20 is suggested. Itsspecific volume V / Sc isin the range from 1 to 2.5 mm. The stressesin the most dangerous areas (i. e. along the axis and the closed-loop fixing) and maximum strain, caused by external gas pressure on the anode working surface, are decreased by 10–30 % and 20–40 % respectively as compared to an anode of the cylindrical shape of the same radius and volume features. This increases the lifetime of a solid oxide fuel cell. A three-dimensional curve of intersection of the surfaces of stress distribution in the anode along its axis and the closed-loop fixing was approximated which displays the values of balanced stresses depending on V / Vc and R / Rc parameters. Also, the advantage of the spheroid shaped SOFC anode-substrate over conventional flat one was substantiated using a shape-dependent crack deceleration approach.
dc.format.extent29-38
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (5), 2019
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (5), 2019
dc.subjectsolid oxide fuel cell
dc.subjectcylindrical and spheroidal shape anodes
dc.subjectfinite element analysis
dc.subjectstress and strain distributions
dc.subjectshape-dependent crack deceleration approach
dc.subjectlifetime
dc.titleSubstantiation of the shape of a solid oxide fuel cell anode using the stress-strain and shape-dependent crack deceleration approaches
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Kuzio I., Vasyliv B., Korendiy V., Borovets V., Podhurska V., 2019
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationKarpenko Physico-mechanical Institute of the NAS of Ukraine
dc.format.pages10
dc.identifier.citationenSubstantiation of the shape of a solid oxide fuel cell anode using the stress-strain and shape-dependent crack deceleration approaches / Igor Kuzio, Bogdan Vasyliv, Vitaliy Korendiy, Volodymyr Borovets, Viktoriya Podhurska // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 1. — P. 29–38.
dc.relation.references1. M. Radovic, and E. Lara-Curzio, “Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen”, Acta Mater., vol. 52, pp. 5747–5756, Jul. 2004.
dc.relation.references2. B. D. Vasyliv et al., “Sposib obrobky NiO-vmisnykh anodiv tverdooksydnoi palyvnoi komirky” [“A method of treatment of NiO-containing anodes for a solid oxide fuel cell”], UA Patent 78992, April 10, 2013. [in Ukrainian].
dc.relation.references3. Y. Wang, et al., “Effects of powder sizes and reduction parameters on the strength of Ni–YSZ anodes”, Solid State Ionics, vol. 177, pp. 1517–1527, Oct. 2006.
dc.relation.references4. B. D. Vasyliv, “A procedure for the investigation of mechanical and physical properties of ceramics under the conditions of biaxial bending of a disk specimen according to the ring–ring scheme”, Mater. Sci., vol. 45, issue 4, pp. 571–575, Jul. 2009.
dc.relation.references5. B. D. Vasyliv, “Improvement of the electrical conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment”, Mater. Sci., vol. 46, issue 2, pp. 260–264, Nov. 2010.
dc.relation.references6. A. Wood, and D. Waldbillig, “Preconditioning treatment to enhance redox tolerance ofsolid oxide fuel cells”, U.S. Patent 8 029 946 B2, October 04, 2011.
dc.relation.references7. V. Ya. Podhurs’ka, et al., “Structural transformations in the NiO-containing anode of ceramic fuel cells in the course of its reduction and oxidation”, Mater. Sci., vol. 49, issue 6, pp. 805–811, May 2014.
dc.relation.references8. V. Podhurska, et al., “Influence of treatment temperature on microstructure and properties of YSZ–NiO anode materials”, Nanoscale Res. Lett., 11:93, Febr. 2016.
dc.relation.references9. B. Vasyliv, et al., “Preconditioning of the YSZ–NiO fuel cell anode in hydrogenous atmospheres containing water vapor”, Nanoscale Res. Lett., 12:265, Apr. 2017.
dc.relation.references10. R.-H. Song, D.-R. Shin, and J.-H. Kim, “Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of the same”, U.S. Patent 7285347 B2, October 23, 2007.
dc.relation.references11. Y. Bai, et al., “Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells”, J. Alloys and Compounds, vol. 480, pp. 554–557, Sept. 2009.
dc.relation.references12. Y. Zhang, et al., “Redox cycling of Ni-YSZ anode investigated by TRP technique”, Solid State Ionics, vol. 176, pp. 2193–2199, Nov. 2005.
dc.relation.references13. B. Sun, et al., “Effect of thermal cycling on residual stress and curvature of anode-supported SOFCs”, Fuel Cells, vol. 6, pp. 805–813, Jul. 2009.
dc.relation.references14. T. Miyazawa, “Flat-plate solid oxide fuel cell”, U.S. Patent 20 110 091 785 A1, April 21, 2011.
dc.relation.references15. O. P. Ostash, B. D. Vasyliv, and V. Ya. Podhurska, “Sposib vyhotovlennia anoda-pidkladky dlia palyvnoi komirky” [“A method of fabrication of an anode substrate for a fuel cell”], UA Patent 109256, August 25, 2016. [in Ukrainian].
dc.relation.references16. B. Vasyliv, Crack initiation and retardation in ceramics. Techniques and applications. Riga, Latvia: LAP LAMBERT Academic Publishing, 2019.
dc.relation.references17. L. Pook, “The fatigue crack direction and threshold behavior of mild steel under mixed mode I and III loading”, Int. Journal of Fatigue, vol. 7, issue 1, pp. 21–30, Febr. 1985.
dc.relation.references18. Stress analysis of cracks, ASTM STP 381, 1965.
dc.relation.referencesen1. M. Radovic, and E. Lara-Curzio, "Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen", Acta Mater., vol. 52, pp. 5747–5756, Jul. 2004.
dc.relation.referencesen2. B. D. Vasyliv et al., "Sposib obrobky NiO-vmisnykh anodiv tverdooksydnoi palyvnoi komirky" ["A method of treatment of NiO-containing anodes for a solid oxide fuel cell"], UA Patent 78992, April 10, 2013. [in Ukrainian].
dc.relation.referencesen3. Y. Wang, et al., "Effects of powder sizes and reduction parameters on the strength of Ni–YSZ anodes", Solid State Ionics, vol. 177, pp. 1517–1527, Oct. 2006.
dc.relation.referencesen4. B. D. Vasyliv, "A procedure for the investigation of mechanical and physical properties of ceramics under the conditions of biaxial bending of a disk specimen according to the ring–ring scheme", Mater. Sci., vol. 45, issue 4, pp. 571–575, Jul. 2009.
dc.relation.referencesen5. B. D. Vasyliv, "Improvement of the electrical conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment", Mater. Sci., vol. 46, issue 2, pp. 260–264, Nov. 2010.
dc.relation.referencesen6. A. Wood, and D. Waldbillig, "Preconditioning treatment to enhance redox tolerance ofsolid oxide fuel cells", U.S. Patent 8 029 946 B2, October 04, 2011.
dc.relation.referencesen7. V. Ya. Podhurs’ka, et al., "Structural transformations in the NiO-containing anode of ceramic fuel cells in the course of its reduction and oxidation", Mater. Sci., vol. 49, issue 6, pp. 805–811, May 2014.
dc.relation.referencesen8. V. Podhurska, et al., "Influence of treatment temperature on microstructure and properties of YSZ–NiO anode materials", Nanoscale Res. Lett., 11:93, Febr. 2016.
dc.relation.referencesen9. B. Vasyliv, et al., "Preconditioning of the YSZ–NiO fuel cell anode in hydrogenous atmospheres containing water vapor", Nanoscale Res. Lett., 12:265, Apr. 2017.
dc.relation.referencesen10. R.-H. Song, D.-R. Shin, and J.-H. Kim, "Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of the same", U.S. Patent 7285347 B2, October 23, 2007.
dc.relation.referencesen11. Y. Bai, et al., "Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells", J. Alloys and Compounds, vol. 480, pp. 554–557, Sept. 2009.
dc.relation.referencesen12. Y. Zhang, et al., "Redox cycling of Ni-YSZ anode investigated by TRP technique", Solid State Ionics, vol. 176, pp. 2193–2199, Nov. 2005.
dc.relation.referencesen13. B. Sun, et al., "Effect of thermal cycling on residual stress and curvature of anode-supported SOFCs", Fuel Cells, vol. 6, pp. 805–813, Jul. 2009.
dc.relation.referencesen14. T. Miyazawa, "Flat-plate solid oxide fuel cell", U.S. Patent 20 110 091 785 A1, April 21, 2011.
dc.relation.referencesen15. O. P. Ostash, B. D. Vasyliv, and V. Ya. Podhurska, "Sposib vyhotovlennia anoda-pidkladky dlia palyvnoi komirky" ["A method of fabrication of an anode substrate for a fuel cell"], UA Patent 109256, August 25, 2016. [in Ukrainian].
dc.relation.referencesen16. B. Vasyliv, Crack initiation and retardation in ceramics. Techniques and applications. Riga, Latvia: LAP LAMBERT Academic Publishing, 2019.
dc.relation.referencesen17. L. Pook, "The fatigue crack direction and threshold behavior of mild steel under mixed mode I and III loading", Int. Journal of Fatigue, vol. 7, issue 1, pp. 21–30, Febr. 1985.
dc.relation.referencesen18. Stress analysis of cracks, ASTM STP 381, 1965.
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.volume5
dc.citation.issue1
dc.citation.spage29
dc.citation.epage38
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Ukrainian Journal of Mechanical Engineering And Materials Science. – 2019. – Vol. 5, No. 1

Files in This Item:
File Description SizeFormat 
2019v5n1_Kuzio_I-Substantiation_of_the_shape_29-38.pdf596.58 kBAdobe PDFView/Open
2019v5n1_Kuzio_I-Substantiation_of_the_shape_29-38__COVER.png475.57 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.