DC Field | Value | Language |
dc.contributor.author | Желих, В. М. | |
dc.contributor.author | Савченко, О. О. | |
dc.contributor.author | Фурдас, Ю. В. | |
dc.contributor.author | Козак, Х. Р. | |
dc.contributor.author | Миронюк, Х. В. | |
dc.contributor.author | Zhelykh, Vasyl | |
dc.contributor.author | Savchenko, Olena | |
dc.contributor.author | Furdas, Yuriy | |
dc.contributor.author | Kozak, Khrystyna | |
dc.contributor.author | Myroniuk, Khrystyna | |
dc.date.accessioned | 2020-05-07T09:58:23Z | - |
dc.date.available | 2020-05-07T09:58:23Z | - |
dc.date.created | 2019-03-23 | |
dc.date.issued | 2019-03-23 | |
dc.identifier.citation | Energy potential of crop waste in heat supply systems / Vasyl Zhelykh, Olena Savchenko, Yuriy Furdas, Khrystyna Kozak, Khrystyna Myroniuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 37–42. | |
dc.identifier.issn | 2707-1057 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/49578 | - |
dc.description.abstract | Однією з найперспективніших складових відновлюваної енергетики України є біоенергетика.
Вона основана на використанні біомаси, яка слугує вихідною сировиною для виготовлення палива у
твердому, рідкому та газоподібному станах. До біомаси зараховують відходи та залишки сільського
господарства, відходи деревини у лісовому господарстві, деревообробній та целюлозно-паперовій
промисловості, енергетичні культури, органічну частину промислових та побутових відходів. Україна
володіє великими площами земельних ресурсів, має сприятливі ґрунтово-кліматологічні умови та
розвинене сільське господарство, тому може успішно розвивати біоенергетику, основану на
рослинній біомасі. Найдоцільніше відходи рослинництва переробляти на біогаз, який дасть змогу
сільськогосподарським підприємствам отримати додаткове джерело енергії та забезпечить виробництво високоякісних органічних добрив. Крім того, виробництво біогазу не шкідливе для навколишнього середовища, оскільки не спричиняє додаткову ремісію парникового вуглекислого газу і
зменшує кількість органічних відходів. Біогаз зручний у використанні для енергетичних потреб,
знаходить застосування на децентралізованих блочних теплоцентралях для електро- і теплопостачання, може подаватися в газотранспортну мережу та використовуватися як моторне паливо для
автомобілів. У статті запропоновано методику визначення кількості біогазу та проведено аналітичні
дослідження метаноутворення у побутовій біогазовій установці з відходів рослинництва (це, зокрема,
кукурудзяні стебла, трава, листя винограду, листя цукрових буряків, солома зернових культур, сіно
червоної конюшини, солома жита). На підставі результатів аналітичних досліджень встановлено, що
із запропонованих видів біомаси найбільше біогазу утворюється з трави, соломи зернових та кукурудзи. | |
dc.description.abstract | One of the most promising components of Ukraine's renewable energy is bioenergy. It is based
on the use of biomass, which is the raw material for the production of solid, liquid and gaseous fuels.
Biomass includes agricultural waste and residues, wood waste in the forestry, woodworking and pulp
and paper industries, energy crops, organic part of industrial and household waste. Ukraine possesses
large areas of land resources, has favorable soil and climatic conditions and developed agriculture, so it
can successfully develop bioenergy based on plant biomass. It is most advisable to convert crop waste
to biogas, which will allow agricultural enterprises to obtain an additional source of energy and ensure
the production of high quality organic fertilizers. In addition, biogas production is environmentally
friendly because it does not cause additional remission of greenhouse gas and reduces the amount of
organic waste. Biogas is easy to use for energy purposes, finds use in decentralized block heat plants for
electricity and heat, can be fed into an existing gas transmission network and used as motor fuel for
cars. This article presents a methodology for determining the amount of biogas and analytical studies
of methane formation in a household biogas plant from crop waste, including corn stalks, grass, grape
leaves, sugar beet leaves, cereal straw, red clover hay, straw. The analysis of the results of analytical
studies shows that the most biogas is produced from grasses, cereals and corn. | |
dc.format.extent | 37-42 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (1), 2019 | |
dc.subject | біоенергетика | |
dc.subject | біомаса | |
dc.subject | енергетичний потенціал | |
dc.subject | біогаз | |
dc.subject | відходи рослинництва | |
dc.subject | bioenergy | |
dc.subject | biomass | |
dc.subject | energy potential | |
dc.subject | biogas | |
dc.subject | plant waste | |
dc.title | Energy potential of crop waste in heat supply systems | |
dc.title.alternative | Енергетичний потенціал відходів рослинництва у системах теплогазопостачання | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2019 | |
dc.rights.holder | © Zhelykh V., Savchenko O., Furdas Y., Kozak K., Myroniuk K., 2019 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 6 | |
dc.identifier.citationen | Energy potential of crop waste in heat supply systems / Vasyl Zhelykh, Olena Savchenko, Yuriy Furdas, Khrystyna Kozak, Khrystyna Myroniuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 37–42. | |
dc.relation.references | Geletukha G. G., Zhelyzensa T. A. (2017). Status and prospects of bioenergy development in Ukraine. | |
dc.relation.references | Industrial heat engineering, 39, No. 2, pp. 60–64 (In Ukrainian). | |
dc.relation.references | Klašnja B., Orlović S., Galić Z. (2013). Comparison of Different Wood Species as Raw Materials for | |
dc.relation.references | Bioenergy. South-East European Forestry, 4 (2), рр. 81–88. | |
dc.relation.references | Irmak S. (2016). Biomass as raw material for production of high value products. Biomass Volume Estimation | |
dc.relation.references | and Valorization to Energy, рр. 201–225. | |
dc.relation.references | Mikkola H. J., Ahokas J. (2011). Renewable energy from agro biomass. Agronomy Research Biosystem | |
dc.relation.references | Engineering Special, 1, рр. 159–164. | |
dc.relation.references | Savchenko O., Zhelykh V., Yurkevych Y., Kozak K., Bahmet S. (2018). Alternative energy source for | |
dc.relation.references | heating system of woodworking enterprise. Energy Eng. Control Syst, 4, No. 1, рр. 27–30. | |
dc.relation.references | Zhelykh V., Furdas Y., Dzeryn O. (2016). Theoretical and experimental investigations of thermal conditions | |
dc.relation.references | of household biogas plant. Selected Scientific Papers – Journal of Civil Engineering, 11(1), рр. 7–14. | |
dc.relation.references | Prins W., Dahmen N. (2015). Processes for thermochemical conversion of biomass. 10-th European | |
dc.relation.references | conference on Industrial Furnaces and and Boilers. 8. | |
dc.relation.references | Deshmukh R., Jacobson A., Chamberlin C., Kammen D. (2013). Thermal gasification or direct combustion. | |
dc.relation.references | Comparison of advanced cogeneration systems in the sugarcane industry. Biomass and bioenergy, Vol. 55, | |
dc.relation.references | pp. 163–174. | |
dc.relation.references | Robak K., Balcerek M. (2018). Review of Second Generation Bioethanol Production from Residual Biomass. | |
dc.relation.references | Food Technology and Biotechnology, 56(2), pp. 174–187. | |
dc.relation.references | Xue Li, Yan-Hua Liu, Xin Zhang, Chang-Ming Ge, Ren-Zhe Piao, Wei-Dong Wang, Zong-Jun Cui, | |
dc.relation.references | and Hong-Yan Zhao (2017). Evaluation of Biogas Production Performance and Dynamics of the Microbial | |
dc.relation.references | Community in. | |
dc.relation.references | Konrád K., Viharos Zs. J., Németh G. (2017) Raw material measurement methods evaluation and ranking for | |
dc.relation.references | pellet production. 15-th IMEKO TC10 Workshop on Technical Diagnostics: “Technical Diagnostics in CyberPhysical Era”, рр. 164–169. | |
dc.relation.references | Saidura R., Abdelaziza E. A., Demirbasb A., Hossaina M. S., Mekhilefc S. (2011). A review on biomass as a | |
dc.relation.references | fuel for boilers. Renewable and Sustainable Energy Reviews, 15 (5), рр. 2262–2289. | |
dc.relation.references | Litvak O. A. (2015). Bioeconomic priorities in the development of the agrarian sector. Global and national | |
dc.relation.references | problems of the economy, 8, рр. 200-205. (In Ukrainian) | |
dc.relation.references | Pivniak G. G., Shkrabets F. P. (2013). Alternative energy in Ukraine: Monographр. 109 (In Ukrainian). | |
dc.relation.references | Korolev S. A., Maikov D. V. (2012). Identification of the mathematical model and investigation of various | |
dc.relation.references | modes of methanogenesis in the mesophilic medium. Computer research and simulation, 4, No. 1, рр. 131–141 (In | |
dc.relation.references | Russian). | |
dc.relation.references | Pavlitsky V. М., Flonts I. V, Barilko N. V. (2015). Exit of biogas from herbaceous plants depending on the | |
dc.relation.references | method of shredding. Scientific herald of the National University of Bioresources and Nature Management of | |
dc.relation.references | Ukraine. Series: Biology, Biotechnology, Ecology, 214, рр. 222–228 (In Ukrainian). | |
dc.relation.references | Soroka A. V., Kostyuchenko N. N., Bryl Ye. A., Kuznetsov I. N. (2016). Evaluation of crops and biowaste | |
dc.relation.references | production for biogas production in the conditions of the Brest region. Ecological Herald, 2 (36), рр. 92–96 (In | |
dc.relation.references | Russian). | |
dc.relation.references | Feduniak I. O. Efficiency of biogas production in Ukraine. (2014). Scientific notes of Ostroh Academy | |
dc.relation.references | National University. Series: Economics, 26, рр. 45–49 (In Ukrainian). | |
dc.relation.references | Zhelykh V. M., Furdas Yu. V. (2011). Patent of Ukraine No. 57360. Biogas reactor. Bul. 4, р. 2 | |
dc.relation.referencesen | Geletukha G. G., Zhelyzensa T. A. (2017). Status and prospects of bioenergy development in Ukraine. | |
dc.relation.referencesen | Industrial heat engineering, 39, No. 2, pp. 60–64 (In Ukrainian). | |
dc.relation.referencesen | Klašnja B., Orlović S., Galić Z. (2013). Comparison of Different Wood Species as Raw Materials for | |
dc.relation.referencesen | Bioenergy. South-East European Forestry, 4 (2), rr. 81–88. | |
dc.relation.referencesen | Irmak S. (2016). Biomass as raw material for production of high value products. Biomass Volume Estimation | |
dc.relation.referencesen | and Valorization to Energy, rr. 201–225. | |
dc.relation.referencesen | Mikkola H. J., Ahokas J. (2011). Renewable energy from agro biomass. Agronomy Research Biosystem | |
dc.relation.referencesen | Engineering Special, 1, rr. 159–164. | |
dc.relation.referencesen | Savchenko O., Zhelykh V., Yurkevych Y., Kozak K., Bahmet S. (2018). Alternative energy source for | |
dc.relation.referencesen | heating system of woodworking enterprise. Energy Eng. Control Syst, 4, No. 1, rr. 27–30. | |
dc.relation.referencesen | Zhelykh V., Furdas Y., Dzeryn O. (2016). Theoretical and experimental investigations of thermal conditions | |
dc.relation.referencesen | of household biogas plant. Selected Scientific Papers – Journal of Civil Engineering, 11(1), rr. 7–14. | |
dc.relation.referencesen | Prins W., Dahmen N. (2015). Processes for thermochemical conversion of biomass. 10-th European | |
dc.relation.referencesen | conference on Industrial Furnaces and and Boilers. 8. | |
dc.relation.referencesen | Deshmukh R., Jacobson A., Chamberlin C., Kammen D. (2013). Thermal gasification or direct combustion. | |
dc.relation.referencesen | Comparison of advanced cogeneration systems in the sugarcane industry. Biomass and bioenergy, Vol. 55, | |
dc.relation.referencesen | pp. 163–174. | |
dc.relation.referencesen | Robak K., Balcerek M. (2018). Review of Second Generation Bioethanol Production from Residual Biomass. | |
dc.relation.referencesen | Food Technology and Biotechnology, 56(2), pp. 174–187. | |
dc.relation.referencesen | Xue Li, Yan-Hua Liu, Xin Zhang, Chang-Ming Ge, Ren-Zhe Piao, Wei-Dong Wang, Zong-Jun Cui, | |
dc.relation.referencesen | and Hong-Yan Zhao (2017). Evaluation of Biogas Production Performance and Dynamics of the Microbial | |
dc.relation.referencesen | Community in. | |
dc.relation.referencesen | Konrád K., Viharos Zs. J., Németh G. (2017) Raw material measurement methods evaluation and ranking for | |
dc.relation.referencesen | pellet production. 15-th IMEKO TC10 Workshop on Technical Diagnostics: "Technical Diagnostics in CyberPhysical Era", rr. 164–169. | |
dc.relation.referencesen | Saidura R., Abdelaziza E. A., Demirbasb A., Hossaina M. S., Mekhilefc S. (2011). A review on biomass as a | |
dc.relation.referencesen | fuel for boilers. Renewable and Sustainable Energy Reviews, 15 (5), rr. 2262–2289. | |
dc.relation.referencesen | Litvak O. A. (2015). Bioeconomic priorities in the development of the agrarian sector. Global and national | |
dc.relation.referencesen | problems of the economy, 8, rr. 200-205. (In Ukrainian) | |
dc.relation.referencesen | Pivniak G. G., Shkrabets F. P. (2013). Alternative energy in Ukraine: Monographr. 109 (In Ukrainian). | |
dc.relation.referencesen | Korolev S. A., Maikov D. V. (2012). Identification of the mathematical model and investigation of various | |
dc.relation.referencesen | modes of methanogenesis in the mesophilic medium. Computer research and simulation, 4, No. 1, rr. 131–141 (In | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Pavlitsky V. M., Flonts I. V, Barilko N. V. (2015). Exit of biogas from herbaceous plants depending on the | |
dc.relation.referencesen | method of shredding. Scientific herald of the National University of Bioresources and Nature Management of | |
dc.relation.referencesen | Ukraine. Series: Biology, Biotechnology, Ecology, 214, rr. 222–228 (In Ukrainian). | |
dc.relation.referencesen | Soroka A. V., Kostyuchenko N. N., Bryl Ye. A., Kuznetsov I. N. (2016). Evaluation of crops and biowaste | |
dc.relation.referencesen | production for biogas production in the conditions of the Brest region. Ecological Herald, 2 (36), rr. 92–96 (In | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Feduniak I. O. Efficiency of biogas production in Ukraine. (2014). Scientific notes of Ostroh Academy | |
dc.relation.referencesen | National University. Series: Economics, 26, rr. 45–49 (In Ukrainian). | |
dc.relation.referencesen | Zhelykh V. M., Furdas Yu. V. (2011). Patent of Ukraine No. 57360. Biogas reactor. Bul. 4, r. 2 | |
dc.citation.volume | 1 | |
dc.citation.issue | 2 | |
dc.citation.spage | 37 | |
dc.citation.epage | 42 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Theory and Building Practice. – 2019. – Vol. 1, No. 2
|