Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/49576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorТкач, Р. О.
dc.contributor.authorДемчина, Б. Г.
dc.contributor.authorСурмай, М. І.
dc.contributor.authorВознюк, Л. І.
dc.contributor.authorНємєц, Я.
dc.contributor.authorTkach, Roman
dc.contributor.authorDemchyna, Bohdan
dc.contributor.authorSurmai, Mykhaylo
dc.contributor.authorVozniuk, Leonid
dc.contributor.authorNiemiec, Janusz
dc.date.accessioned2020-05-07T09:58:21Z-
dc.date.available2020-05-07T09:58:21Z-
dc.date.created2019-03-23
dc.date.issued2019-03-23
dc.identifier.citationДослідження зчеплення скляних пластин між собою за дії статичного навантаження / Р. О. Ткач, Б. Г. Демчина, М. І. Сурмай, Л. І. Вознюк, Я. Нємєц // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 21–29.
dc.identifier.issn2707-1057
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49576-
dc.description.abstractСлабким місцем будь-якої конструкції завжди є вузол з’єднання елементів. У статті наведено результати дослідження зчеплення скляних пластин, які з’єднані між собою по всій поверхні за допомогою клеючих матеріалів та виготовлених за технологією триплексування, за дії статичного навантаження. Встановлено несучу здатність та деформативність таких з’єднань. Для проведення досліджень спроєктовано, виготовлено та випробувано шість серій дослідних зразків. Дослідні зразки складалися з трьох скляних пластин, товщина кожної 10 мм, з’єднаних між собою за допомогою технології триплексування та різних клеючих матеріалів. Розроблено програму експериментальних досліджень. На основі отриманих результатів проаналізовано роботу зчеплення скляних пластин та побудовано усереднений графік залежності деформацій зсуву та дотичних напружень τ=N/A для серій дослідних зразків.
dc.description.abstractThe weak point of any structure is always the elements junction node. This article presents the results of a study of the adhesion of glass plates interconnected over the entire surface by means of adhesive materials and triplex technology under the action of static loading. The bearing capacity and deformability of such joints was established. For the research purposes there were designed, manufactured and tested six series of prototypes. The prototypes consisted of three glass plates, each 10 mm thick, interconnected by means of triplex technology and various adhesive materials. Before bonding, the glass plates of the prototypes of I–V series were cleaned of dirt and degreased. The adhesive was applied to the entire surface of one plate. Then, the glass plates were firmly interconnected with the help of the vise and held for 5–10 minutes. The curing time depended on the adhesive materials. The curing of the glue of the samples of the fourth and fifth series was done under the rays of an ultraviolet lamp. The plates of the sixth series prototypes were interconnected by triplex technology, where EVASAFE polymer film (Bridgestone, Japan) was inserted between the plates and the prototypes were heated to 130 ºC and held for 30 minutes. An experimental research program was developed. The test rig consisted of a stand for static structural strength tests. The external load N was applied by means of a hydraulic jack and was performed step by step. The magnitude of the load was 1.0 kN and was monitored using a DOSM-3-50U dynamometer for the I–V series prototypes and a ring dynamometer for the VI series prototypes until the complete destruction of the prototype. At each load stage a 10 min exposure was performed followed by gauge reading. On the basis of the obtained results, an analysis of glass plates adhesion was performed and an averaged dependency graph of shear deformations and tangent stresses τ = N / A for the series of the prototypes was constructed.
dc.format.extent21-29
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (1), 2019
dc.subjectшари скла
dc.subjectтриплекс
dc.subjectдослідний зразок
dc.subjectскляні пластини
dc.subjectglass layers
dc.subjecttriplex
dc.subjectprototype
dc.subjectglass plates
dc.titleДослідження зчеплення скляних пластин між собою за дії статичного навантаження
dc.title.alternativeA study of mutual adhesion of glass plates under static loading
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Ткач Р. О., Демчина Б. Г., Сурмай М. І., Вознюк Л. І., Нємєц Я., 2019
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages9
dc.identifier.citationenA study of mutual adhesion of glass plates under static loading / Roman Tkach, Bohdan Demchyna, Mykhaylo Surmai, Leonid Vozniuk, Janusz Niemiec // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 21–29.
dc.relation.referencesZubkov V., & Kondratieva N. (2008). Characteristics of calculation of flat glass in translucent structures,
dc.relation.referencesGlass performance days 2008. Conference Proceedings. New Delhi, December, pp. 27–29.
dc.relation.referencesKislyuk Ya., Shmigel R., Savenko V., & Sukhoosov G. (2010). Efficiency of application of gluing metal
dc.relation.referencesjoints of elements of wooden construction, New technologies in construction, vol. No. 1 (19), рр. 75–78.
dc.relation.referencesDemchyna B., Surmai M., & Tkach R. (2018). Еxperimental research of laminated glass column for central
dc.relation.referencescompresson, Bulletin of the National University of Lviv Polytechnic: Theory and Practice of Construction, No. 888,
dc.relation.referencesрр. 52–55.
dc.relation.referencesDemchyna B., Surmai M., & Tkach R. (2018). Glass column, The patent of Ukraine No. 128990, Е04С 3/30,
dc.relation.referencesЕ04В 1/18, Е04В 1/28, Е04Н 15/34, Е04Н 15-60, No. u201805969 statement 29.05.2018; posted 10.10.2018.
dc.relation.referencesDel Linz P., Hooper P. A., Arora H., Smith D., Pascoe L., Cormie D., Blackman B.R.K., & Dear J.P. (2015).
dc.relation.referencesReaction forces of laminated glass windows subject to blast loads, Composite Structures, Vol. 131, pp. 193–206.
dc.relation.referencesKalamar R., & Eliasova M. (2015). Load Bearing Innovative Construction from Glass, 2nd International
dc.relation.referencesConference on Innovative Materials, Structures and Technologies. Riga, pp. 1–7.
dc.relation.referencesPetersen R., & Bagger A. (2019). Structural use of glass: Cruciform columns and glass portals with bolted
dc.relation.referencesconnections subjected to bending, Glass performance days 2009, рр. 371–375.
dc.relation.referencesCampione G., Di Paola M., & Minafo G. (2014). Laminated Glass Members in Compression: Experiments
dc.relation.referencesand Modeling, Journal of Structural Engineering, No. 2, рр. 1–9.
dc.relation.referencesenZubkov V., & Kondratieva N. (2008). Characteristics of calculation of flat glass in translucent structures,
dc.relation.referencesenGlass performance days 2008. Conference Proceedings. New Delhi, December, pp. 27–29.
dc.relation.referencesenKislyuk Ya., Shmigel R., Savenko V., & Sukhoosov G. (2010). Efficiency of application of gluing metal
dc.relation.referencesenjoints of elements of wooden construction, New technologies in construction, vol. No. 1 (19), rr. 75–78.
dc.relation.referencesenDemchyna B., Surmai M., & Tkach R. (2018). Experimental research of laminated glass column for central
dc.relation.referencesencompresson, Bulletin of the National University of Lviv Polytechnic: Theory and Practice of Construction, No. 888,
dc.relation.referencesenrr. 52–55.
dc.relation.referencesenDemchyna B., Surmai M., & Tkach R. (2018). Glass column, The patent of Ukraine No. 128990, E04S 3/30,
dc.relation.referencesenE04V 1/18, E04V 1/28, E04N 15/34, E04N 15-60, No. u201805969 statement 29.05.2018; posted 10.10.2018.
dc.relation.referencesenDel Linz P., Hooper P. A., Arora H., Smith D., Pascoe L., Cormie D., Blackman B.R.K., & Dear J.P. (2015).
dc.relation.referencesenReaction forces of laminated glass windows subject to blast loads, Composite Structures, Vol. 131, pp. 193–206.
dc.relation.referencesenKalamar R., & Eliasova M. (2015). Load Bearing Innovative Construction from Glass, 2nd International
dc.relation.referencesenConference on Innovative Materials, Structures and Technologies. Riga, pp. 1–7.
dc.relation.referencesenPetersen R., & Bagger A. (2019). Structural use of glass: Cruciform columns and glass portals with bolted
dc.relation.referencesenconnections subjected to bending, Glass performance days 2009, rr. 371–375.
dc.relation.referencesenCampione G., Di Paola M., & Minafo G. (2014). Laminated Glass Members in Compression: Experiments
dc.relation.referencesenand Modeling, Journal of Structural Engineering, No. 2, rr. 1–9.
dc.citation.volume1
dc.citation.issue2
dc.citation.spage21
dc.citation.epage29
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Theory and Building Practice. – 2019. – Vol. 1, No. 2

Files in This Item:
File Description SizeFormat 
2019v1n2_Tkach_R-A_study_of_mutual_adhesion_21-29.pdf2.57 MBAdobe PDFView/Open
2019v1n2_Tkach_R-A_study_of_mutual_adhesion_21-29__COVER.png436.19 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.