Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/49569
Title: The optimization strength theory of RC elements and solution of shear problem
Other Titles: Оптимізаційна теорія міцності залізобетонних елементів та розв’язання задачі міцності похилого перерізу
Authors: Митрофанов, В.
Пінчук, Н.
Mitrofanov, Vitalii
Pinchuk, Nataliia
Affiliation: Центр передових методів розрахунку залізобетонних конструкцій
Національний університет “Полтавська політехніка імені Юрія Кондратюка”
Center for Advanced Design Methods of Concrete Structures
Poltava National Technical Yuri Kondratuyk University
Bibliographic description (Ukraine): Mitrofanov V. The optimization strength theory of RC elements and solution of shear problem / Vitalii Mitrofanov, Nataliia Pinchuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 23–31.
Bibliographic description (International): Mitrofanov V. The optimization strength theory of RC elements and solution of shear problem / Vitalii Mitrofanov, Nataliia Pinchuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 23–31.
Is part of: Theory and Building Practice, 1 (1), 2019
Issue: 1
Volume: 1
Issue Date: 23-Mar-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: класифікація елементів
оптимізаційна теорія
shear bearing capacity factors
element classification
optimization design
Number of pages: 9
Page range: 23-31
Start page: 23
End page: 31
Abstract: Проаналізовано розрахунок залізобетонних конструкцій на дію поперечної сили за нормами проєктування MC 2010. Зазначено, що, незважаючи на наявність декількох типів руйнування за похилим перерізом, які спостерігаються в експериментах, норми MC 2010 враховують лише два типи руйнування: за критичною похилою тріщиною (CIC) та від роздавлювання бетонного підкосу. Показано хибність переконання, що стосується виключно великого впливу сил зчеплення в тріщині на несучу здатність похилого перерізу конструкцій. Наголошено на необхідності розкриття причин складності питання, що розглядається, тобто відсутності інформації, яка повинна входити до моделі. Відсутня інформація – це повна система можливих випадків руйнування, яка запропонована у вигляді класифікації елементів залежно від кількості поздовжньої та поперечної арматури, відповідної поведінки під навантаженням та типів руйнування. Цю класифікацію покладено в основу оптимізаційної теорії міцності залізобетонних елементів (OSTCE) за спільної дії згинальних моментів, поперечних та поздовжніх сил. Запропонована класифікація показує велику різноманітність можливих випадків руйнування залізобетонних елементів та дає змогу вибирати групу елементів з оптимальними практичними характеристиками: мінімальними витратами сталі, пластичним руйнуванням за похилим перерізом та порівняно простими розрахунками. Викладено основи оптимізаційної теорії міцності залізобетонних елементів, її переваги, практичне застосування та зафіксовано добру збіжність із даними результатів різних випробувань.
The shear strength designs recommended by the MC 2010 are analyzed. It is noted that despite the multiformity of shear failure types observed in experiments, the MC 2010 takes into account only two types: on the Critical Inclined Crack (CIC) and on the web concrete crushing. It is shown the nonvalidity of opinion concerning exclusive great importance of interlock forces in the crack for shear bearing capacity. It is emphasized the need to reveal the cause of considered problem complication, i.e. missing information which must be included into model. Such missing information is complete system of possible shear failure types which is offered in the form of the elements classification depending on quantity of longitudinal and shear reinforcement, respective behavior under loading and failure type. This classification was assumed as a basis of the Optimization Strength Theory of Concrete Elements (OSTCE) under joint action of bending moment, shear and axial forces. The offered classification shows the great variety of possible shear failure types and allows to select the elements group with optimal practical features: minimum steel expense, plastic failure on the CIC and comparatively simple design. The fundamentals of OSTCE, its merits, practical application and well agreement with various test data are stated.
URI: https://ena.lpnu.ua/handle/ntb/49569
ISSN: 2707-1057
Copyright owner: © Національний університет “Львівська політехніка”, 2019
© Mitrofanov Vitalii, Pinchuk Nataliia, 2019
URL for reference material: http://www.cadmcs.org
References (Ukraine): Beck, A. & Kaufmann, W. (2017), Paradigms of Shear in Structural Concrete – Review and Experimental
Verification. Book of Abstracts for 2017 fib Symposium, Hordijk, D.A.; Lukovic, M. (Eds), Maastricht, The
Netherlands, p. 344.
CADMCS (2016): Center for Advanced Design Methods of Concrete Structures, http://www.cadmcs.org (Oct. 2016).
fib Bulletin 57 (2010), Shear and punching shear in RC and FRC elements. Technical report, Proceedings of a
workshop held on 15–16 October 2010, in Salo, Lake Garda, Italy.
Kotlyarov, V. A. (1992), Strength of reinforced concrete elements under joint action of the bending moments,
longitudinal compressive and shear forces. Ph.D. thesis. Poltava Eng. Build. Inst., Poltava. (in Russian).
Mikitenko, S. M. (1995), Strength under bending of reinforced concrete elements with complete resistance of
shear and high-strength longitudinal reinforcement. Ph.D. thesis, Poltava TU, Poltava. (in Ukrainian).
Mitrofanov, V. P. (1982), The stress-strain state, strength and cracking of the RC elements under cross bending.
Ph.D. thesis, VZISI, Moscow (in Russian).
Mitrofanov, V. P. (1999), Investigation of destruction zone resistance of HSC of beams under shear forces
action.Proceedings of the 5th International Symposium on Utilization of HS/HP Concrete, Holland,I., Sellevold, E. J.,
(Eds), Sandefjord, Norway, vol. 1, pp. 461–468.
Mitrofanov, V. P. (2000), Optimization strength theory of reinforced concrete bar elements and structures with
practical aspects of its use. Bygningsstatiske Meddelelser. Danish Society for Structural Science and Engineering, 71,
Dec. 2000, pp. 71–125.
Mitrofanov, V. P. & Artsev, S. I. (2007), Experimental verification of the Optimization Strength Theory of
Reinforced Concrete Elements by the beams with changing height of section. Building Structures, Kiev NIISK, 67, 244–253 (in Russian).
Mitrofanov, V. P. (2008), Investigation of crackssurface roughness and shear transfer strength of cracked HSC.
Proceedings of the International fib Symposium 2008, Walraven, J.C.; Stoelhorst, D. (Eds), Amsterdam, The
Netherlands, CRC Press/Balkema, p. 134.
Mitrofanov, V. P. & Pinchuk, N. M. & Mitrofanov, P. B. (2014), The primary design conceptions of concrete
and reinforced concrete structures in the ADM Model Code. Proceedings of the 4th International fib Congress 2014,
Mumbai, India, Short paper 73, pp. 259–261.
Mitrofanov, V. & Pinchuk, N. (2017), Aspects of Implementation into practice of Optimization Strength
Theory of RC Elements. Book of Abstracts for 2017 fib Symposium, Hordijk, D.A.; Lukovic,M. (Eds), Maastricht,
The Netherlands, p. 352.
Peregudov, F. I. & Tarasenko, F. P. (1989), Introduction to System Analysis. Higher School, Moscow
(in Russian).
Voskoboynik, P. P. (1985), Complex stress state of concrete failure zone and taking into account of the one in
the strength designs of RC elements cross sections. Ph. D. Thesis, OISI, Odessa, 1985 (in Russian).
Walraven, J. & Stroband J. (1999) Shear Capacity of High Strength Concrete beams with Shear Reinforcement.
Proceedings of 5th International Symposium on Utilization of HS/HP Concrete, Holand, I.; Sellevold, E. J. (Eds),
Sandefjord, Norway, Vol.1, pp. 693–700.
References (International): Beck, A. & Kaufmann, W. (2017), Paradigms of Shear in Structural Concrete – Review and Experimental
Verification. Book of Abstracts for 2017 fib Symposium, Hordijk, D.A.; Lukovic, M. (Eds), Maastricht, The
Netherlands, p. 344.
CADMCS (2016): Center for Advanced Design Methods of Concrete Structures, http://www.cadmcs.org (Oct. 2016).
fib Bulletin 57 (2010), Shear and punching shear in RC and FRC elements. Technical report, Proceedings of a
workshop held on 15–16 October 2010, in Salo, Lake Garda, Italy.
Kotlyarov, V. A. (1992), Strength of reinforced concrete elements under joint action of the bending moments,
longitudinal compressive and shear forces. Ph.D. thesis. Poltava Eng. Build. Inst., Poltava. (in Russian).
Mikitenko, S. M. (1995), Strength under bending of reinforced concrete elements with complete resistance of
shear and high-strength longitudinal reinforcement. Ph.D. thesis, Poltava TU, Poltava. (in Ukrainian).
Mitrofanov, V. P. (1982), The stress-strain state, strength and cracking of the RC elements under cross bending.
Ph.D. thesis, VZISI, Moscow (in Russian).
Mitrofanov, V. P. (1999), Investigation of destruction zone resistance of HSC of beams under shear forces
action.Proceedings of the 5th International Symposium on Utilization of HS/HP Concrete, Holland,I., Sellevold, E. J.,
(Eds), Sandefjord, Norway, vol. 1, pp. 461–468.
Mitrofanov, V. P. (2000), Optimization strength theory of reinforced concrete bar elements and structures with
practical aspects of its use. Bygningsstatiske Meddelelser. Danish Society for Structural Science and Engineering, 71,
Dec. 2000, pp. 71–125.
Mitrofanov, V. P. & Artsev, S. I. (2007), Experimental verification of the Optimization Strength Theory of
Reinforced Concrete Elements by the beams with changing height of section. Building Structures, Kiev NIISK, 67, 244–253 (in Russian).
Mitrofanov, V. P. (2008), Investigation of crackssurface roughness and shear transfer strength of cracked HSC.
Proceedings of the International fib Symposium 2008, Walraven, J.C.; Stoelhorst, D. (Eds), Amsterdam, The
Netherlands, CRC Press/Balkema, p. 134.
Mitrofanov, V. P. & Pinchuk, N. M. & Mitrofanov, P. B. (2014), The primary design conceptions of concrete
and reinforced concrete structures in the ADM Model Code. Proceedings of the 4th International fib Congress 2014,
Mumbai, India, Short paper 73, pp. 259–261.
Mitrofanov, V. & Pinchuk, N. (2017), Aspects of Implementation into practice of Optimization Strength
Theory of RC Elements. Book of Abstracts for 2017 fib Symposium, Hordijk, D.A.; Lukovic,M. (Eds), Maastricht,
The Netherlands, p. 352.
Peregudov, F. I. & Tarasenko, F. P. (1989), Introduction to System Analysis. Higher School, Moscow
(in Russian).
Voskoboynik, P. P. (1985), Complex stress state of concrete failure zone and taking into account of the one in
the strength designs of RC elements cross sections. Ph. D. Thesis, OISI, Odessa, 1985 (in Russian).
Walraven, J. & Stroband J. (1999) Shear Capacity of High Strength Concrete beams with Shear Reinforcement.
Proceedings of 5th International Symposium on Utilization of HS/HP Concrete, Holand, I.; Sellevold, E. J. (Eds),
Sandefjord, Norway, Vol.1, pp. 693–700.
Content type: Article
Appears in Collections:Theory and Building Practice. – 2019. – Vol. 1, No. 1

Files in This Item:
File Description SizeFormat 
2019v1n1_Mitrofanov_V-The_optimization_strength_23-31.pdf957.3 kBAdobe PDFView/Open
2019v1n1_Mitrofanov_V-The_optimization_strength_23-31__COVER.png442.92 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.