DC Field | Value | Language |
dc.contributor.author | Zhyhailo, Mariia | |
dc.contributor.author | Demchyna, Oksana | |
dc.contributor.author | Rymsha, Khrystyna | |
dc.contributor.author | Yevchuk, Iryna | |
dc.contributor.author | Rachiy, Bogdan | |
dc.date.accessioned | 2020-03-03T09:04:23Z | - |
dc.date.available | 2020-03-03T09:04:23Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method / Mariia Zhyhailo, Oksana Demchyna, Khrystyna Rymsha, Iryna Yevchuk, Bogdan Rachiy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 436–443. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46512 | - |
dc.description.abstract | На основі акрилових мономерів та кремнеземної неорганічної складової, сформованої у результаті золь-гель перетворення прекурсора - 3-метакрилоксипропілтриметоксисилану (МАПТМС), синтезовано протонопровідні
органо-неорганічні нанокомпозитні мембрани. Методом лазерної інтерферометрії досліджено кінетику полімеризації in situ.
Встановлено водопоглинання мембран і набрякання їх у метанолі, виміряно контактні кути змочування, що дало змогу
розрахувати вільну поверхневу енергію мембран та її складові.
Досліджено протонну провідність мембран за різних температур, оцінено енергію активації протонної провідності.
Одержані гібридні мембрани демонструють високу протонну
провідність, що дає можливість використовувати їх у паливних комірках. | |
dc.description.abstract | Proton conductive organic-inorganic membranes
were synthesized based on acrylic monomers and
silica inorganic component, derived as a result of sol-gel
transformation of precursor – 3-methacryloxypropyltrimethoxysilane
(MAPTMS). Kinetics of polymerization
in situ was investigated by laser interferometry.
Membranes characterization includes water and methanol
uptake, contact angle and proton conductivity at different
temperatures. Activation energy values for proton conductivity
in prepared membranes were evaluated. The obtained
hybrid membranes demonstrated high proton conductivity
making themattractive for the use in fuel cells. | |
dc.format.extent | 436-443 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (13), 2019 | |
dc.relation.uri | https://doi.org/10.1039/c2py20106b | |
dc.relation.uri | https://doi.org/10.1039/b808149m | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2008.07.002 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2009.12.054 | |
dc.relation.uri | https://doi.org/10.1021/ma101247c | |
dc.relation.uri | https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> | |
dc.relation.uri | https://doi.org/10.1016/j.pmatsci.2010.11.001 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2011.06.001 | |
dc.relation.uri | https://doi.org/10.1016/j.memsci.2006.06.031 | |
dc.relation.uri | https://doi.org/10.1149/1.2044333 | |
dc.relation.uri | https://doi.org/10.1149/1.1391198 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2014.04.030 | |
dc.relation.uri | https://doi.org/10.1163/1568554053148735 | |
dc.relation.uri | https://doi.org/10.1016/j.tsf.2013.05.121 | |
dc.relation.uri | https://doi.org/10.1007/s10853-015-9654-0 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2017.05.065 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.01.058 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2015.11.021 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2015.10.145 | |
dc.relation.uri | https://doi.org/10.1023/B:JSST.0000047969.56298.d7 | |
dc.relation.uri | https://doi.org/10.1021/cm950192a | |
dc.relation.uri | https://doi.org/10.3866/PKU.WHXB20010906 | |
dc.relation.uri | https://doi.org/10.1149/1.1862472 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2009.04.040 | |
dc.subject | протонна провідність | |
dc.subject | органонеорганічна мембрана | |
dc.subject | УФ-затвердження | |
dc.subject | золь-гель процес | |
dc.subject | акрилат | |
dc.subject | 3-метакрилоксипропілтриметоксисилан | |
dc.subject | proton conductivity | |
dc.subject | organic-inorganic membrane | |
dc.subject | UV-curing | |
dc.subject | sol-gel process | |
dc.subject | acrylate | |
dc.subject | 3-methacryloxypropyltrimethoxysilane | |
dc.title | Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method | |
dc.title.alternative | Протонопровідні органо-неорганічні нанокомпозитні мембрани, одержані Золь-Гель методом | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Zhyhailo M., Demchyna O., Rymsha K., Yevchuk I., Rachiy B., 2019 | |
dc.contributor.affiliation | L. M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of NAS of Ukraine | |
dc.contributor.affiliation | Vasyl Stefanyk Precarpathian National University | |
dc.format.pages | 8 | |
dc.identifier.citationen | Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method / Mariia Zhyhailo, Oksana Demchyna, Khrystyna Rymsha, Iryna Yevchuk, Bogdan Rachiy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 436–443. | |
dc.relation.references | 1. Liu Y.-L.: Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/c2py20106b | |
dc.relation.references | 2. Devanathan R.: Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m | |
dc.relation.references | 3. Xu T., Wu D., Wu L.: Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002 | |
dc.relation.references | 4. Ahmad H., Kamarudin S., Hasran U. et al.: Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054 | |
dc.relation.references | 5. Elabd Y., Hickner M.:Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c | |
dc.relation.references | 6. Tarasevych M., Kuzov A.: Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86. | |
dc.relation.references | 7. Aricò A., Srinivasan S., Antonucci V.: Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> 3.0.CO;2-5 | |
dc.relation.references | 8. Silva V., Mendes A., Madeira L. et al.: Advances in Fuel Cells, 2005, 24 p. | |
dc.relation.references | 9. Dupuis A.: Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001 | |
dc.relation.references | 10. Park C., Lee C., Guiver M. et al.: Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001 | |
dc.relation.references | 11. Liang Z., Zhao T., Prabhuram J.: J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031 | |
dc.relation.references | 12. Pu C., Huang W., Ley K. et al.: J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333 | |
dc.relation.references | 13. Peled E., Duvdevani T., Aharon A. et al.: Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198 | |
dc.relation.references | 14. Kim D., JoM., Nam S.: J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030 | |
dc.relation.references | 15. Ogoshi T., Chujo Y.: Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735 | |
dc.relation.references | 16. Kim D., Lee B., Nam S.: Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121 | |
dc.relation.references | 17. Takahashi K., Umeda J., Hayashi K. et al.: J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0 | |
dc.relation.references | 18. TakemotoM., Hayashi K., SakamotoW.: Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065 | |
dc.relation.references | 19. Demydova Kh., Horechyy A., Yevchuk I. et al.: Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058 | |
dc.relation.references | 20. Samaryk V., Voronov A., Tarnavchyk I. et al.: Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.references | 21. Kapoor P., Mhaske S., Joshi K.: Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021 | |
dc.relation.references | 22. Costa R., Lameiras F., Nunes E. et al.: Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145 | |
dc.relation.references | 23. AparicioM., Duran A.: J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7 | |
dc.relation.references | 24. Kreuer K.: Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a | |
dc.relation.references | 25. Ying L., Jiang-Hong G., Yu-Sheng X.: Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906 | |
dc.relation.references | 26. Park Y.-I., Moon J., Kim H.: Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472 | |
dc.relation.references | 27. Kim H., Prakash S., Mustain W. et al.: J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040 | |
dc.relation.referencesen | 1. Liu Y.-L., Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/P.2py20106b | |
dc.relation.referencesen | 2. Devanathan R., Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m | |
dc.relation.referencesen | 3. Xu T., Wu D., Wu L., Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002 | |
dc.relation.referencesen | 4. Ahmad H., Kamarudin S., Hasran U. et al., Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054 | |
dc.relation.referencesen | 5. Elabd Y., Hickner M.:Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c | |
dc.relation.referencesen | 6. Tarasevych M., Kuzov A., Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86. | |
dc.relation.referencesen | 7. Aricò A., Srinivasan S., Antonucci V., Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> 3.0.CO;2-5 | |
dc.relation.referencesen | 8. Silva V., Mendes A., Madeira L. et al., Advances in Fuel Cells, 2005, 24 p. | |
dc.relation.referencesen | 9. Dupuis A., Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001 | |
dc.relation.referencesen | 10. Park C., Lee C., Guiver M. et al., Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001 | |
dc.relation.referencesen | 11. Liang Z., Zhao T., Prabhuram J., J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031 | |
dc.relation.referencesen | 12. Pu C., Huang W., Ley K. et al., J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333 | |
dc.relation.referencesen | 13. Peled E., Duvdevani T., Aharon A. et al., Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198 | |
dc.relation.referencesen | 14. Kim D., JoM., Nam S., J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030 | |
dc.relation.referencesen | 15. Ogoshi T., Chujo Y., Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735 | |
dc.relation.referencesen | 16. Kim D., Lee B., Nam S., Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121 | |
dc.relation.referencesen | 17. Takahashi K., Umeda J., Hayashi K. et al., J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0 | |
dc.relation.referencesen | 18. TakemotoM., Hayashi K., SakamotoW., Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065 | |
dc.relation.referencesen | 19. Demydova Kh., Horechyy A., Yevchuk I. et al., Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058 | |
dc.relation.referencesen | 20. Samaryk V., Voronov A., Tarnavchyk I. et al., Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.referencesen | 21. Kapoor P., Mhaske S., Joshi K., Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021 | |
dc.relation.referencesen | 22. Costa R., Lameiras F., Nunes E. et al., Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145 | |
dc.relation.referencesen | 23. AparicioM., Duran A., J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7 | |
dc.relation.referencesen | 24. Kreuer K., Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a | |
dc.relation.referencesen | 25. Ying L., Jiang-Hong G., Yu-Sheng X., Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906 | |
dc.relation.referencesen | 26. Park Y.-I., Moon J., Kim H., Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472 | |
dc.relation.referencesen | 27. Kim H., Prakash S., Mustain W. et al., J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040 | |
dc.citation.issue | 4 | |
dc.citation.spage | 436 | |
dc.citation.epage | 443 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 4
|