Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46495
Title: Study of Iodine Oxide Particles at the Air/Sea Interface in the Presence of Surfactants and Humic Acid
Other Titles: Дослідження частинок оксиду йоду на поверхні розділу фаз повітря/вода у присутності поверхнево-активних речовин та гумінової кислоти
Authors: Sbai, Salah Eddine
Farida, Bentayeb
Affiliation: Mohammed V University of Rabat
University Lyon
Bibliographic description (Ukraine): Sbai S. E. Study of Iodine Oxide Particles at the Air/Sea Interface in the Presence of Surfactants and Humic Acid / Salah Eddine Sbai, Bentayeb Farida // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 341–346.
Bibliographic description (International): Sbai S. E. Study of Iodine Oxide Particles at the Air/Sea Interface in the Presence of Surfactants and Humic Acid / Salah Eddine Sbai, Bentayeb Farida // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 341–346.
Is part of: Chemistry & Chemical Technology, 3 (13), 2019
Issue: 3
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: фотохімія
поверхнево-активні речовини
йод
частинка
йодоорганічний
photochemistry
surfactants
iodine
particle
organoiodine
Number of pages: 6
Page range: 341-346
Start page: 341
End page: 346
Abstract: У присутності поверхнево-активних речо- вин (нонанової НК та стеаринової СК кислот) та гумінової кислоти (ГК) досліджено формування частинки оксиду йоду (ОЙЧ). Встановлено, що оксид йоду, який змішували з орга- нічними сполуками (НК, СК, ГК), а потім опромінювали ксено- новою лампою, приводить до утворення ОЙЧ. Виділення утво- рених частинок визначалось за допомогою скануючого класи- фікатора рухомості частинок. Показано, що кількість часток суттєво зменшується в присутності НК, СК, ГК; така поведінка пояснюється утворенням йодоорганічних сполук.
In the present study, the formation procedure of iodine oxide particle (IOP) has been investigated in the presence of surfactants (nonanoic and stearic acids NASA) and humic acid (HA). It was established that iodine oxide which was mixed with the organic compounds (HA, NA and SA), and then irradiated with a xenon lamp leads to the formation of IOP. The evolution of formed particles number was followed by a scanning mobility particle sizer. Results obtained show that the number of particles decreases strongly in the presence of HA, NA and SA, this behavior is explained by the formation of organoiodine compounds.
URI: https://ena.lpnu.ua/handle/ntb/46495
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Sbai S., Farida B., 2019
URL for reference material: http://doi.org/10.1021/acs.jpca.6b01261
https://doi.org/10.1021/cr5006638
https://doi.org/10.1007/s11356-019-05012-5
https://doi.org/10.1021/jp903486u
https://doi.org/10.1021/jp101985f
https://pubs.acs.org/doi/abs/10.1021/jp2048234
https://doi.org/10.1029/2003GL019215
https://doi.org/10.1038/nature07035
https://doi.org//10.1029/.2007GL030111
https://doi.org/10.5194/acp-6-1513-2006
https://doi.org/10.1126/science.1141408
https://doi.org/10.1071/EN05070
https://doi.org/10.5194/acp-8-6069-2008
https://doi.org/10.1021/es3030935
https://doi.org/10.1071/EN05079
https://doi.org/10.1524/zpch.2010.6143
https://doi.org/10.5194/acp-7-1381-2007
https://doi.org/10.5194/acp-10-4611-2010
https://doi.org/10.1029/2010GL043990
https://doi.org/10.1021/cr0206465
https://doi.org/10.1016/j.atmosenv.2011.08.042
https://doi.org/10.1029/2003JC002131
https://doi.org/10.1016/0141-1136(93)90100-E
https://doi.org/10.1029/JD090iD05p07889
https://doi.org/10.1029/2008GL034250
https://doi.org/10.1016/S0304-4203(02)00033-6
https://doi.org/10.1029/2004JD005400
https://doi.org/10.1029/2001JD001403
https://doi.org/10.1029/2000JD000282
https://doi.org/10.5194/bg-8-121-2011
https://doi.org10.1021/acs.est.6b03520
https://doi.org/10.1021/acs.est.6b03887
https://doi.org/10.1021/es9010338
https://doi.org/10.1029/2010GB003794
https://doi.org/10.1021/es901852z
https://doi.org/10.1039/C4RA09833A
https://doi.org/10.1021/acs.est.5b03937
https://doi.org/10.1038/srep12741
https://doi.org/10.1021/acs.est.5b02388
https://doi.org/10.1038/s41598-017-12601-2
https://doi.org/10.1039/C4RA10456K
https://doi.org/10.1016/j.watres.2015.01.016
https://doi.org/10.1016/j.scitotenv.2012.09.037
https://doi.org/10.1002/adsc.201290006
https://doi.org/10.1016/j.watres.2013.08.030
References (Ukraine): 1. Shinichi E., Michael R.: J. Phys. Chem. A., 2016, 120, 3578. http://doi.org/10.1021/acs.jpca.6b01261
2. SimpsonW., Brown S., Saiz-Lopez A. et al.: Chem. Rev., 2015, 115, 4035. https://doi.org/10.1021/cr5006638
3. Sbai S., Farida B.: Environ. Sci. Pollut. Res., 2019, 1. https://doi.org/10.1007/s11356-019-05012-5
4. Sakamoto Y., Yabushita A., KawasakiM., Enami S.: J. Phys. Chem., 2009, 113, 7707. https://doi.org/10.1021/jp903486u
5. Hayase S., Yabushita A., KawasakiM. et al.: J. Phys. Chem., 2010, 114, 6016. https://doi.org/10.1021/jp101985f
6. Sayaka H., Akihiro Y.,Masahiro K.: J. Phys. Chem. A, 2012, 116, 5779. https://pubs.acs.org/doi/abs/10.1021/jp2048234.
7. Saiz-Lopez A., Plane J.:Geophys. Res. Lett., 2004, 31, L04112. https://doi.org/10.1029/2003GL019215
8. Read K.,Mahajan A., Carpenter L. et al.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035
9. Saiz-Lopez A., Chance K., Liu X. et al.:Geophys. Res. Lett., 2007, 34, L12812. https://doi.org//10.1029/.2007GL030111
10. Saiz-Lopez A., Shillito J., Coe H., Plane J.: Atmos. Chem. Phys., 2006, 6, 1513. https://doi.org/10.5194/acp-6-1513-2006
11. Saiz-Lopez A., Mahajan A., Salmon R. et al.: Science, 2007, 317, 348. https://doi.org/10.1126/science.1141408
12. Baker A.: Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070
13. Gilfedde B., Lai S., PetriM. et al.: Atmos. Chem. Phys., 2008, 20, 6069. https://doi.org/10.5194/acp-8-6069-2008
14. Baker A.: Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070
15. Russell W., Saunders R., SamanthaM., John M.: Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935
16. Saunders R., Plane J.: Environ. Chem., 2005, 2, 299. https://doi.org/10.1071/EN05079
17. Saunders R., Kumar R.,Martin J. et al.: Phys. Chem., 2010, 224,1095. https://doi.org/10.1524/zpch.2010.6143
18. Pechtl S., Schmitz G., Von Glasow R.: Atmos. Chem. Phys., 2007, 7, 1381. https://doi.org/10.5194/acp-7-1381-2007
19. Mahajan A., Plane J., Oetjen H. et al.: Atmos. Chem. Phys. 2010, 10, 4611. https://doi.org/10.5194/acp-10-4611-2010
20. Read K.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035
21. Jones C.:Geophys. Res. Lett., 2010, 37, L18804. https://doi.org/10.1029/2010GL043990
22. Carpenter L.: Chem. Rev., 2003, 103, 4953. https://doi.org/10.1021/cr0206465
23. Reeser D., Donaldson D.: Atmos. Environ., 2011, 45, 6116. https://doi.org/10.1016/j.atmosenv.2011.08.042
24. Frew N.: J. Geophys. Res., 2004, 109, C08S17. https://doi.org/10.1029/2003JC002131
25. Garabetian F., Romano J., Paul R., Sigoillot J.:Mar. Environ. Res., 1993, 35, 323. https://doi.org/10.1016/0141-1136(93)90100-E
26. Schneider J., Gagosian R.: J. Geophys. Res., 1985, 90, 7889. https://doi.org/10.1029/JD090iD05p07889
27. Facchini M., RinaldiM., Decesari S. et al.:Geophys. Res. Lett., 2008, 35, L17801. https://doi.org/10.1029/2008GL034250
28. Kovac N., Bajt O., Faganeli J. et al.:Mar. Chem., 2002, 78 , 205. https://doi.org/10.1016/S0304-4203(02)00033-6
29. Tervahattu H., Juhanoja J., Vaida V. et al.: J. Geophys. Res., 2005, 110, D6. https://doi.org/10.1029/2004JD005400
30. Tervahattu H., Juhanoja J., Kupiainen K.: J. Geophys. Res., 2002, 107, D16. https://doi.org/10.1029/2001JD001403
31. Tervahattu H., Hartonen K., Kerminen V. et al.: J. Geophys. Res., 2002, 107, D7. https://doi.org/10.1029/2000JD000282
32. Wurl O., Wurl E.,Miller L. et al.: Biogeosciences, 2011, 8, 121. https://doi.org/10.5194/bg-8-121-2011
33. Bernard R., Ciuraru A., George C.: Environ. Sci. Technol., 2016, 50, 8678. https://doi.org10.1021/acs.est.6b03520
34. Zhinen H., Yongguang Y., Dong C., Jing-fu L.: Environ. Sci.Technol., 2017, 51, 5464. https://doi.org/10.1021/acs.est.6b03887
35. Gallard H., Allard S., Nicolau R. et al.: Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338
36] Leri A., Hakala J.,Marcus M. et al.: Biogeochem., 2010, 24, GB4017. https://doi.org/10.1029/2010GB003794
37. Komaki Y., Pals J., Wagner E. et al.: Environ. Sci. Technol., 2009, 43, 8437. https://doi.org/10.1021/es901852z
38. Wang L., Zhou X., Fredimoses M. et al.: RSC Adv., 2014, 422, 57350. https://doi.org/10.1039/C4RA09833A
39. Leri A., Ravel B.: Environ. Sci.Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937
40. Ciuraru R., Fine L., Van PinxterenM. et al.: Sci. Rep., 2015, 5, 12741. https://doi.org/10.1038/srep12741
41. Ciuraru R., Fine L., Van PinxterenM. et al.: Environ. Sci. Technol., 2015, 49, 13199. https://doi.org/10.1021/acs.est.5b02388
42. Peter A., Ciuraru R., Stéphanie R. et al.: Sci. Rep.,2017, 7,12693. https://doi.org/10.1038/s41598-017-12601-2
43. Wang L., Zhou X., Fredimoses M. et al.: RSC Adv., 2014, 101, 57350. https://doi.org/10.1039/C4RA10456K
44. Gallard H., Allard S., Nicolau R. et al.: Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338
45. Leri A., Ravel B.: Environ. Sci. Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937
46. Marchisio A., MinellaM.,Maurino V. et al.:Water Res., 2015, 73, 145. https://doi.org/10.1016/j.watres.2015.01.016
47. Laurentiis E.,MinellaM.,Maurino V. et al.: Sci. Total. Environ., 2012, 439, 299. https://doi.org/10.1016/j.scitotenv.2012.09.037
48. Saunders R., Kumar R.,MacDonald S., Plane J.: Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935
49. Zhang P., Sun D., WenM. et al.: Adv. Synth. Catal., 2012, 354, 720. https://doi.org/10.1002/adsc.201290006
50. HeebM., Criquet J., Zimmermann-Steffens S., von Gunten U.: Water Res., 2014, 48, 15. https://doi.org/10.1016/j.watres.2013.08.030
References (International): 1. Shinichi E., Michael R., J. Phys. Chem. A., 2016, 120, 3578. http://doi.org/10.1021/acs.jpca.6b01261
2. SimpsonW., Brown S., Saiz-Lopez A. et al., Chem. Rev., 2015, 115, 4035. https://doi.org/10.1021/cr5006638
3. Sbai S., Farida B., Environ. Sci. Pollut. Res., 2019, 1. https://doi.org/10.1007/s11356-019-05012-5
4. Sakamoto Y., Yabushita A., KawasakiM., Enami S., J. Phys. Chem., 2009, 113, 7707. https://doi.org/10.1021/jp903486u
5. Hayase S., Yabushita A., KawasakiM. et al., J. Phys. Chem., 2010, 114, 6016. https://doi.org/10.1021/jp101985f
6. Sayaka H., Akihiro Y.,Masahiro K., J. Phys. Chem. A, 2012, 116, 5779. https://pubs.acs.org/doi/abs/10.1021/jp2048234.
7. Saiz-Lopez A., Plane J.:Geophys. Res. Lett., 2004, 31, L04112. https://doi.org/10.1029/2003GL019215
8. Read K.,Mahajan A., Carpenter L. et al.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035
9. Saiz-Lopez A., Chance K., Liu X. et al.:Geophys. Res. Lett., 2007, 34, L12812. https://doi.org//10.1029/.2007GL030111
10. Saiz-Lopez A., Shillito J., Coe H., Plane J., Atmos. Chem. Phys., 2006, 6, 1513. https://doi.org/10.5194/acp-6-1513-2006
11. Saiz-Lopez A., Mahajan A., Salmon R. et al., Science, 2007, 317, 348. https://doi.org/10.1126/science.1141408
12. Baker A., Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070
13. Gilfedde B., Lai S., PetriM. et al., Atmos. Chem. Phys., 2008, 20, 6069. https://doi.org/10.5194/acp-8-6069-2008
14. Baker A., Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070
15. Russell W., Saunders R., SamanthaM., John M., Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935
16. Saunders R., Plane J., Environ. Chem., 2005, 2, 299. https://doi.org/10.1071/EN05079
17. Saunders R., Kumar R.,Martin J. et al., Phys. Chem., 2010, 224,1095. https://doi.org/10.1524/zpch.2010.6143
18. Pechtl S., Schmitz G., Von Glasow R., Atmos. Chem. Phys., 2007, 7, 1381. https://doi.org/10.5194/acp-7-1381-2007
19. Mahajan A., Plane J., Oetjen H. et al., Atmos. Chem. Phys. 2010, 10, 4611. https://doi.org/10.5194/acp-10-4611-2010
20. Read K.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035
21. Jones C.:Geophys. Res. Lett., 2010, 37, L18804. https://doi.org/10.1029/2010GL043990
22. Carpenter L., Chem. Rev., 2003, 103, 4953. https://doi.org/10.1021/cr0206465
23. Reeser D., Donaldson D., Atmos. Environ., 2011, 45, 6116. https://doi.org/10.1016/j.atmosenv.2011.08.042
24. Frew N., J. Geophys. Res., 2004, 109, P.08S17. https://doi.org/10.1029/2003JC002131
25. Garabetian F., Romano J., Paul R., Sigoillot J.:Mar. Environ. Res., 1993, 35, 323. https://doi.org/10.1016/0141-1136(93)90100-E
26. Schneider J., Gagosian R., J. Geophys. Res., 1985, 90, 7889. https://doi.org/10.1029/JD090iD05p07889
27. Facchini M., RinaldiM., Decesari S. et al.:Geophys. Res. Lett., 2008, 35, L17801. https://doi.org/10.1029/2008GL034250
28. Kovac N., Bajt O., Faganeli J. et al.:Mar. Chem., 2002, 78 , 205. https://doi.org/10.1016/S0304-4203(02)00033-6
29. Tervahattu H., Juhanoja J., Vaida V. et al., J. Geophys. Res., 2005, 110, D6. https://doi.org/10.1029/2004JD005400
30. Tervahattu H., Juhanoja J., Kupiainen K., J. Geophys. Res., 2002, 107, D16. https://doi.org/10.1029/2001JD001403
31. Tervahattu H., Hartonen K., Kerminen V. et al., J. Geophys. Res., 2002, 107, D7. https://doi.org/10.1029/2000JD000282
32. Wurl O., Wurl E.,Miller L. et al., Biogeosciences, 2011, 8, 121. https://doi.org/10.5194/bg-8-121-2011
33. Bernard R., Ciuraru A., George C., Environ. Sci. Technol., 2016, 50, 8678. https://doi.org10.1021/acs.est.6b03520
34. Zhinen H., Yongguang Y., Dong C., Jing-fu L., Environ. Sci.Technol., 2017, 51, 5464. https://doi.org/10.1021/acs.est.6b03887
35. Gallard H., Allard S., Nicolau R. et al., Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338
36] Leri A., Hakala J.,Marcus M. et al., Biogeochem., 2010, 24, GB4017. https://doi.org/10.1029/2010GB003794
37. Komaki Y., Pals J., Wagner E. et al., Environ. Sci. Technol., 2009, 43, 8437. https://doi.org/10.1021/es901852z
38. Wang L., Zhou X., Fredimoses M. et al., RSC Adv., 2014, 422, 57350. https://doi.org/10.1039/P.4RA09833A
39. Leri A., Ravel B., Environ. Sci.Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937
40. Ciuraru R., Fine L., Van PinxterenM. et al., Sci. Rep., 2015, 5, 12741. https://doi.org/10.1038/srep12741
41. Ciuraru R., Fine L., Van PinxterenM. et al., Environ. Sci. Technol., 2015, 49, 13199. https://doi.org/10.1021/acs.est.5b02388
42. Peter A., Ciuraru R., Stéphanie R. et al., Sci. Rep.,2017, 7,12693. https://doi.org/10.1038/s41598-017-12601-2
43. Wang L., Zhou X., Fredimoses M. et al., RSC Adv., 2014, 101, 57350. https://doi.org/10.1039/P.4RA10456K
44. Gallard H., Allard S., Nicolau R. et al., Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338
45. Leri A., Ravel B., Environ. Sci. Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937
46. Marchisio A., MinellaM.,Maurino V. et al.:Water Res., 2015, 73, 145. https://doi.org/10.1016/j.watres.2015.01.016
47. Laurentiis E.,MinellaM.,Maurino V. et al., Sci. Total. Environ., 2012, 439, 299. https://doi.org/10.1016/j.scitotenv.2012.09.037
48. Saunders R., Kumar R.,MacDonald S., Plane J., Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935
49. Zhang P., Sun D., WenM. et al., Adv. Synth. Catal., 2012, 354, 720. https://doi.org/10.1002/adsc.201290006
50. HeebM., Criquet J., Zimmermann-Steffens S., von Gunten U., Water Res., 2014, 48, 15. https://doi.org/10.1016/j.watres.2013.08.030
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3

Files in This Item:
File Description SizeFormat 
2019v13n3_Sbai_S_E-Study_of_Iodine_Oxide_Particles_341-346.pdf410 kBAdobe PDFView/Open
2019v13n3_Sbai_S_E-Study_of_Iodine_Oxide_Particles_341-346__COVER.png571.06 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.