https://oldena.lpnu.ua/handle/ntb/46495
Title: | Study of Iodine Oxide Particles at the Air/Sea Interface in the Presence of Surfactants and Humic Acid |
Other Titles: | Дослідження частинок оксиду йоду на поверхні розділу фаз повітря/вода у присутності поверхнево-активних речовин та гумінової кислоти |
Authors: | Sbai, Salah Eddine Farida, Bentayeb |
Affiliation: | Mohammed V University of Rabat University Lyon |
Bibliographic description (Ukraine): | Sbai S. E. Study of Iodine Oxide Particles at the Air/Sea Interface in the Presence of Surfactants and Humic Acid / Salah Eddine Sbai, Bentayeb Farida // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 341–346. |
Bibliographic description (International): | Sbai S. E. Study of Iodine Oxide Particles at the Air/Sea Interface in the Presence of Surfactants and Humic Acid / Salah Eddine Sbai, Bentayeb Farida // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 341–346. |
Is part of: | Chemistry & Chemical Technology, 3 (13), 2019 |
Issue: | 3 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | фотохімія поверхнево-активні речовини йод частинка йодоорганічний photochemistry surfactants iodine particle organoiodine |
Number of pages: | 6 |
Page range: | 341-346 |
Start page: | 341 |
End page: | 346 |
Abstract: | У присутності поверхнево-активних речо-
вин (нонанової НК та стеаринової СК кислот) та гумінової
кислоти (ГК) досліджено формування частинки оксиду йоду
(ОЙЧ). Встановлено, що оксид йоду, який змішували з орга-
нічними сполуками (НК, СК, ГК), а потім опромінювали ксено-
новою лампою, приводить до утворення ОЙЧ. Виділення утво-
рених частинок визначалось за допомогою скануючого класи-
фікатора рухомості частинок. Показано, що кількість часток
суттєво зменшується в присутності НК, СК, ГК; така
поведінка пояснюється утворенням йодоорганічних сполук. In the present study, the formation procedure of iodine oxide particle (IOP) has been investigated in the presence of surfactants (nonanoic and stearic acids NASA) and humic acid (HA). It was established that iodine oxide which was mixed with the organic compounds (HA, NA and SA), and then irradiated with a xenon lamp leads to the formation of IOP. The evolution of formed particles number was followed by a scanning mobility particle sizer. Results obtained show that the number of particles decreases strongly in the presence of HA, NA and SA, this behavior is explained by the formation of organoiodine compounds. |
URI: | https://ena.lpnu.ua/handle/ntb/46495 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Sbai S., Farida B., 2019 |
URL for reference material: | http://doi.org/10.1021/acs.jpca.6b01261 https://doi.org/10.1021/cr5006638 https://doi.org/10.1007/s11356-019-05012-5 https://doi.org/10.1021/jp903486u https://doi.org/10.1021/jp101985f https://pubs.acs.org/doi/abs/10.1021/jp2048234 https://doi.org/10.1029/2003GL019215 https://doi.org/10.1038/nature07035 https://doi.org//10.1029/.2007GL030111 https://doi.org/10.5194/acp-6-1513-2006 https://doi.org/10.1126/science.1141408 https://doi.org/10.1071/EN05070 https://doi.org/10.5194/acp-8-6069-2008 https://doi.org/10.1021/es3030935 https://doi.org/10.1071/EN05079 https://doi.org/10.1524/zpch.2010.6143 https://doi.org/10.5194/acp-7-1381-2007 https://doi.org/10.5194/acp-10-4611-2010 https://doi.org/10.1029/2010GL043990 https://doi.org/10.1021/cr0206465 https://doi.org/10.1016/j.atmosenv.2011.08.042 https://doi.org/10.1029/2003JC002131 https://doi.org/10.1016/0141-1136(93)90100-E https://doi.org/10.1029/JD090iD05p07889 https://doi.org/10.1029/2008GL034250 https://doi.org/10.1016/S0304-4203(02)00033-6 https://doi.org/10.1029/2004JD005400 https://doi.org/10.1029/2001JD001403 https://doi.org/10.1029/2000JD000282 https://doi.org/10.5194/bg-8-121-2011 https://doi.org10.1021/acs.est.6b03520 https://doi.org/10.1021/acs.est.6b03887 https://doi.org/10.1021/es9010338 https://doi.org/10.1029/2010GB003794 https://doi.org/10.1021/es901852z https://doi.org/10.1039/C4RA09833A https://doi.org/10.1021/acs.est.5b03937 https://doi.org/10.1038/srep12741 https://doi.org/10.1021/acs.est.5b02388 https://doi.org/10.1038/s41598-017-12601-2 https://doi.org/10.1039/C4RA10456K https://doi.org/10.1016/j.watres.2015.01.016 https://doi.org/10.1016/j.scitotenv.2012.09.037 https://doi.org/10.1002/adsc.201290006 https://doi.org/10.1016/j.watres.2013.08.030 |
References (Ukraine): | 1. Shinichi E., Michael R.: J. Phys. Chem. A., 2016, 120, 3578. http://doi.org/10.1021/acs.jpca.6b01261 2. SimpsonW., Brown S., Saiz-Lopez A. et al.: Chem. Rev., 2015, 115, 4035. https://doi.org/10.1021/cr5006638 3. Sbai S., Farida B.: Environ. Sci. Pollut. Res., 2019, 1. https://doi.org/10.1007/s11356-019-05012-5 4. Sakamoto Y., Yabushita A., KawasakiM., Enami S.: J. Phys. Chem., 2009, 113, 7707. https://doi.org/10.1021/jp903486u 5. Hayase S., Yabushita A., KawasakiM. et al.: J. Phys. Chem., 2010, 114, 6016. https://doi.org/10.1021/jp101985f 6. Sayaka H., Akihiro Y.,Masahiro K.: J. Phys. Chem. A, 2012, 116, 5779. https://pubs.acs.org/doi/abs/10.1021/jp2048234. 7. Saiz-Lopez A., Plane J.:Geophys. Res. Lett., 2004, 31, L04112. https://doi.org/10.1029/2003GL019215 8. Read K.,Mahajan A., Carpenter L. et al.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035 9. Saiz-Lopez A., Chance K., Liu X. et al.:Geophys. Res. Lett., 2007, 34, L12812. https://doi.org//10.1029/.2007GL030111 10. Saiz-Lopez A., Shillito J., Coe H., Plane J.: Atmos. Chem. Phys., 2006, 6, 1513. https://doi.org/10.5194/acp-6-1513-2006 11. Saiz-Lopez A., Mahajan A., Salmon R. et al.: Science, 2007, 317, 348. https://doi.org/10.1126/science.1141408 12. Baker A.: Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070 13. Gilfedde B., Lai S., PetriM. et al.: Atmos. Chem. Phys., 2008, 20, 6069. https://doi.org/10.5194/acp-8-6069-2008 14. Baker A.: Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070 15. Russell W., Saunders R., SamanthaM., John M.: Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935 16. Saunders R., Plane J.: Environ. Chem., 2005, 2, 299. https://doi.org/10.1071/EN05079 17. Saunders R., Kumar R.,Martin J. et al.: Phys. Chem., 2010, 224,1095. https://doi.org/10.1524/zpch.2010.6143 18. Pechtl S., Schmitz G., Von Glasow R.: Atmos. Chem. Phys., 2007, 7, 1381. https://doi.org/10.5194/acp-7-1381-2007 19. Mahajan A., Plane J., Oetjen H. et al.: Atmos. Chem. Phys. 2010, 10, 4611. https://doi.org/10.5194/acp-10-4611-2010 20. Read K.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035 21. Jones C.:Geophys. Res. Lett., 2010, 37, L18804. https://doi.org/10.1029/2010GL043990 22. Carpenter L.: Chem. Rev., 2003, 103, 4953. https://doi.org/10.1021/cr0206465 23. Reeser D., Donaldson D.: Atmos. Environ., 2011, 45, 6116. https://doi.org/10.1016/j.atmosenv.2011.08.042 24. Frew N.: J. Geophys. Res., 2004, 109, C08S17. https://doi.org/10.1029/2003JC002131 25. Garabetian F., Romano J., Paul R., Sigoillot J.:Mar. Environ. Res., 1993, 35, 323. https://doi.org/10.1016/0141-1136(93)90100-E 26. Schneider J., Gagosian R.: J. Geophys. Res., 1985, 90, 7889. https://doi.org/10.1029/JD090iD05p07889 27. Facchini M., RinaldiM., Decesari S. et al.:Geophys. Res. Lett., 2008, 35, L17801. https://doi.org/10.1029/2008GL034250 28. Kovac N., Bajt O., Faganeli J. et al.:Mar. Chem., 2002, 78 , 205. https://doi.org/10.1016/S0304-4203(02)00033-6 29. Tervahattu H., Juhanoja J., Vaida V. et al.: J. Geophys. Res., 2005, 110, D6. https://doi.org/10.1029/2004JD005400 30. Tervahattu H., Juhanoja J., Kupiainen K.: J. Geophys. Res., 2002, 107, D16. https://doi.org/10.1029/2001JD001403 31. Tervahattu H., Hartonen K., Kerminen V. et al.: J. Geophys. Res., 2002, 107, D7. https://doi.org/10.1029/2000JD000282 32. Wurl O., Wurl E.,Miller L. et al.: Biogeosciences, 2011, 8, 121. https://doi.org/10.5194/bg-8-121-2011 33. Bernard R., Ciuraru A., George C.: Environ. Sci. Technol., 2016, 50, 8678. https://doi.org10.1021/acs.est.6b03520 34. Zhinen H., Yongguang Y., Dong C., Jing-fu L.: Environ. Sci.Technol., 2017, 51, 5464. https://doi.org/10.1021/acs.est.6b03887 35. Gallard H., Allard S., Nicolau R. et al.: Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338 36] Leri A., Hakala J.,Marcus M. et al.: Biogeochem., 2010, 24, GB4017. https://doi.org/10.1029/2010GB003794 37. Komaki Y., Pals J., Wagner E. et al.: Environ. Sci. Technol., 2009, 43, 8437. https://doi.org/10.1021/es901852z 38. Wang L., Zhou X., Fredimoses M. et al.: RSC Adv., 2014, 422, 57350. https://doi.org/10.1039/C4RA09833A 39. Leri A., Ravel B.: Environ. Sci.Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937 40. Ciuraru R., Fine L., Van PinxterenM. et al.: Sci. Rep., 2015, 5, 12741. https://doi.org/10.1038/srep12741 41. Ciuraru R., Fine L., Van PinxterenM. et al.: Environ. Sci. Technol., 2015, 49, 13199. https://doi.org/10.1021/acs.est.5b02388 42. Peter A., Ciuraru R., Stéphanie R. et al.: Sci. Rep.,2017, 7,12693. https://doi.org/10.1038/s41598-017-12601-2 43. Wang L., Zhou X., Fredimoses M. et al.: RSC Adv., 2014, 101, 57350. https://doi.org/10.1039/C4RA10456K 44. Gallard H., Allard S., Nicolau R. et al.: Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338 45. Leri A., Ravel B.: Environ. Sci. Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937 46. Marchisio A., MinellaM.,Maurino V. et al.:Water Res., 2015, 73, 145. https://doi.org/10.1016/j.watres.2015.01.016 47. Laurentiis E.,MinellaM.,Maurino V. et al.: Sci. Total. Environ., 2012, 439, 299. https://doi.org/10.1016/j.scitotenv.2012.09.037 48. Saunders R., Kumar R.,MacDonald S., Plane J.: Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935 49. Zhang P., Sun D., WenM. et al.: Adv. Synth. Catal., 2012, 354, 720. https://doi.org/10.1002/adsc.201290006 50. HeebM., Criquet J., Zimmermann-Steffens S., von Gunten U.: Water Res., 2014, 48, 15. https://doi.org/10.1016/j.watres.2013.08.030 |
References (International): | 1. Shinichi E., Michael R., J. Phys. Chem. A., 2016, 120, 3578. http://doi.org/10.1021/acs.jpca.6b01261 2. SimpsonW., Brown S., Saiz-Lopez A. et al., Chem. Rev., 2015, 115, 4035. https://doi.org/10.1021/cr5006638 3. Sbai S., Farida B., Environ. Sci. Pollut. Res., 2019, 1. https://doi.org/10.1007/s11356-019-05012-5 4. Sakamoto Y., Yabushita A., KawasakiM., Enami S., J. Phys. Chem., 2009, 113, 7707. https://doi.org/10.1021/jp903486u 5. Hayase S., Yabushita A., KawasakiM. et al., J. Phys. Chem., 2010, 114, 6016. https://doi.org/10.1021/jp101985f 6. Sayaka H., Akihiro Y.,Masahiro K., J. Phys. Chem. A, 2012, 116, 5779. https://pubs.acs.org/doi/abs/10.1021/jp2048234. 7. Saiz-Lopez A., Plane J.:Geophys. Res. Lett., 2004, 31, L04112. https://doi.org/10.1029/2003GL019215 8. Read K.,Mahajan A., Carpenter L. et al.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035 9. Saiz-Lopez A., Chance K., Liu X. et al.:Geophys. Res. Lett., 2007, 34, L12812. https://doi.org//10.1029/.2007GL030111 10. Saiz-Lopez A., Shillito J., Coe H., Plane J., Atmos. Chem. Phys., 2006, 6, 1513. https://doi.org/10.5194/acp-6-1513-2006 11. Saiz-Lopez A., Mahajan A., Salmon R. et al., Science, 2007, 317, 348. https://doi.org/10.1126/science.1141408 12. Baker A., Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070 13. Gilfedde B., Lai S., PetriM. et al., Atmos. Chem. Phys., 2008, 20, 6069. https://doi.org/10.5194/acp-8-6069-2008 14. Baker A., Environ. Chem., 2005, 2, 295. https://doi.org/10.1071/EN05070 15. Russell W., Saunders R., SamanthaM., John M., Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935 16. Saunders R., Plane J., Environ. Chem., 2005, 2, 299. https://doi.org/10.1071/EN05079 17. Saunders R., Kumar R.,Martin J. et al., Phys. Chem., 2010, 224,1095. https://doi.org/10.1524/zpch.2010.6143 18. Pechtl S., Schmitz G., Von Glasow R., Atmos. Chem. Phys., 2007, 7, 1381. https://doi.org/10.5194/acp-7-1381-2007 19. Mahajan A., Plane J., Oetjen H. et al., Atmos. Chem. Phys. 2010, 10, 4611. https://doi.org/10.5194/acp-10-4611-2010 20. Read K.:Nature, 2008, 453, 1232. https://doi.org/10.1038/nature07035 21. Jones C.:Geophys. Res. Lett., 2010, 37, L18804. https://doi.org/10.1029/2010GL043990 22. Carpenter L., Chem. Rev., 2003, 103, 4953. https://doi.org/10.1021/cr0206465 23. Reeser D., Donaldson D., Atmos. Environ., 2011, 45, 6116. https://doi.org/10.1016/j.atmosenv.2011.08.042 24. Frew N., J. Geophys. Res., 2004, 109, P.08S17. https://doi.org/10.1029/2003JC002131 25. Garabetian F., Romano J., Paul R., Sigoillot J.:Mar. Environ. Res., 1993, 35, 323. https://doi.org/10.1016/0141-1136(93)90100-E 26. Schneider J., Gagosian R., J. Geophys. Res., 1985, 90, 7889. https://doi.org/10.1029/JD090iD05p07889 27. Facchini M., RinaldiM., Decesari S. et al.:Geophys. Res. Lett., 2008, 35, L17801. https://doi.org/10.1029/2008GL034250 28. Kovac N., Bajt O., Faganeli J. et al.:Mar. Chem., 2002, 78 , 205. https://doi.org/10.1016/S0304-4203(02)00033-6 29. Tervahattu H., Juhanoja J., Vaida V. et al., J. Geophys. Res., 2005, 110, D6. https://doi.org/10.1029/2004JD005400 30. Tervahattu H., Juhanoja J., Kupiainen K., J. Geophys. Res., 2002, 107, D16. https://doi.org/10.1029/2001JD001403 31. Tervahattu H., Hartonen K., Kerminen V. et al., J. Geophys. Res., 2002, 107, D7. https://doi.org/10.1029/2000JD000282 32. Wurl O., Wurl E.,Miller L. et al., Biogeosciences, 2011, 8, 121. https://doi.org/10.5194/bg-8-121-2011 33. Bernard R., Ciuraru A., George C., Environ. Sci. Technol., 2016, 50, 8678. https://doi.org10.1021/acs.est.6b03520 34. Zhinen H., Yongguang Y., Dong C., Jing-fu L., Environ. Sci.Technol., 2017, 51, 5464. https://doi.org/10.1021/acs.est.6b03887 35. Gallard H., Allard S., Nicolau R. et al., Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338 36] Leri A., Hakala J.,Marcus M. et al., Biogeochem., 2010, 24, GB4017. https://doi.org/10.1029/2010GB003794 37. Komaki Y., Pals J., Wagner E. et al., Environ. Sci. Technol., 2009, 43, 8437. https://doi.org/10.1021/es901852z 38. Wang L., Zhou X., Fredimoses M. et al., RSC Adv., 2014, 422, 57350. https://doi.org/10.1039/P.4RA09833A 39. Leri A., Ravel B., Environ. Sci.Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937 40. Ciuraru R., Fine L., Van PinxterenM. et al., Sci. Rep., 2015, 5, 12741. https://doi.org/10.1038/srep12741 41. Ciuraru R., Fine L., Van PinxterenM. et al., Environ. Sci. Technol., 2015, 49, 13199. https://doi.org/10.1021/acs.est.5b02388 42. Peter A., Ciuraru R., Stéphanie R. et al., Sci. Rep.,2017, 7,12693. https://doi.org/10.1038/s41598-017-12601-2 43. Wang L., Zhou X., Fredimoses M. et al., RSC Adv., 2014, 101, 57350. https://doi.org/10.1039/P.4RA10456K 44. Gallard H., Allard S., Nicolau R. et al., Environ. Sci. Technol., 2009, 43, 7003. https://doi.org/10.1021/es9010338 45. Leri A., Ravel B., Environ. Sci. Technol., 2015, 49, 13350. https://doi.org/10.1021/acs.est.5b03937 46. Marchisio A., MinellaM.,Maurino V. et al.:Water Res., 2015, 73, 145. https://doi.org/10.1016/j.watres.2015.01.016 47. Laurentiis E.,MinellaM.,Maurino V. et al., Sci. Total. Environ., 2012, 439, 299. https://doi.org/10.1016/j.scitotenv.2012.09.037 48. Saunders R., Kumar R.,MacDonald S., Plane J., Environ. Sci. Technol., 2012, 46, 11854. https://doi.org/10.1021/es3030935 49. Zhang P., Sun D., WenM. et al., Adv. Synth. Catal., 2012, 354, 720. https://doi.org/10.1002/adsc.201290006 50. HeebM., Criquet J., Zimmermann-Steffens S., von Gunten U., Water Res., 2014, 48, 15. https://doi.org/10.1016/j.watres.2013.08.030 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n3_Sbai_S_E-Study_of_Iodine_Oxide_Particles_341-346.pdf | 410 kB | Adobe PDF | View/Open | |
2019v13n3_Sbai_S_E-Study_of_Iodine_Oxide_Particles_341-346__COVER.png | 571.06 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.