Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46477
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSrivastava, Abhishek
dc.contributor.authorSharma, Vivek
dc.contributor.authorPrajapati, Anjali
dc.contributor.authorSrivastava, Neetu
dc.contributor.authorNaik, R. M.
dc.date.accessioned2020-03-02T13:09:21Z-
dc.date.available2020-03-02T13:09:21Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationSpectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity on Oxidation of Hexacyanoferrate(II) by Periodate Ion in Water Samples / Abhishek Srivastava, Vivek Sharma, Anjali Prajapati, Neetu Srivastava, R. M. Naik // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 275–279.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46477-
dc.description.abstractДля визначення рутенію(III) на мікрорівні застосовано каталітичний ефект хлориду рутенію на зов- нішнє перенесення електронів гексаціаноферрату(II) періодат- ним йоном у водному лужному середовищі. Встановлено оптимальні умови реакції та необхідний час. Лінійна залежність між поглинальною здатністю та концентрацією Ru(III) використана для визначення слідів Ru(III). Показано, що додавання інтерферентних йонів (в концентраціях, до 71 разів вищих за концентрацію Ru) істотно не впливає на ката- літичну активність Ru(III) при окисненні гексаціано- феррату(II) періодатним йоном. Поліамінокарбоксилати пригнічують його каталітичну здатність до максимального значення, якщо допустима межа є більшою за 14,29. Враховуючи відтворюваність, стабільність та селективность цього методу, запропоновано використовувати його для різних типів зразків води для визначення рутенію(III) на мікрорівні.
dc.description.abstractThe catalytic effect of ruthenium chloride on the outer sphere electron transfer of hexacyanoferrate(II) by periodate ion in aqueous alkaline medium has been effectively employed to determine ruthenium(III) at micro level. The optimum reaction condition has been established and fixed time procedure is adopted. A linear relationship between changes in absorbance and added Ru(III) concentration has been utilized for the trace level determination of Ru(III). The results reveal that the addition of interfering ions (up to 71 times higher concentration of Ru) does not have significant effect on the catalytic activity of Ru(III) on oxidation of hexacyanoferrate(II) by periodate ion. Polyaminocarboxylates (HEDTA, EDTA and IDA) suppress its catalytic power to maximum, if tolerance limit is more than 14.29 times. Due to the reproducibility, stability and selectivity, this method can also be quantitatively applied in different types of water samples for determination of ruthenium(III) at micro level.
dc.format.extent275-279
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (13), 2019
dc.relation.urihttps://doi.org/10.1080/10408340290765524
dc.relation.urihttps://doi.org/10.1006/abio.1999.4364
dc.relation.urihttps://doi.org/10.1590/S0103-50532004000200004
dc.relation.urihttps://doi.org/10.1016/j.jpba.2006.03.011
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMR.602-604.1289
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.217-219.2397
dc.relation.urihttps://doi.org/10.2174/1876214X01104010001
dc.relation.urihttps://doi.org/10.1007/s12039-009-0030-y
dc.relation.urihttps://doi.org/10.1007/s12039-016-1067-3
dc.relation.urihttps://doi.org/10.1039/c3cc46239k
dc.relation.urihttps://doi.org/10.1039/c2dt32216a
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2015.09.119
dc.relation.urihttps://doi.org/10.1038/ncomms3466
dc.relation.urihttps://doi.org/10.1021/ml400390c
dc.relation.urihttps://doi.org/10.1016/j.tsf.2012.12.037
dc.relation.urihttps://doi.org/10.1080/01496395.2014.983245
dc.relation.urihttps://doi.org/10.1016/j.saa.2007.03.030
dc.relation.urihttps://doi.org/10.1016/j.saa.2007.10.011
dc.relation.urihttps://doi.org/10.1007/BF00323114
dc.relation.urihttps://doi.org/10.1021/a1000004b
dc.relation.urihttps://doi.org/10.1007/BF02076032
dc.relation.urihttps://doi.org/10.1081/AL-120014292
dc.relation.urihttps://doi.org/10.1007/BF03245812
dc.subjectкінетика
dc.subjectмеханізм
dc.subjectгексаціаноферрат(II)
dc.subjectперіодат
dc.subjectрутеній(III)
dc.subjectkinetics
dc.subjectmechanism
dc.subjecthexacyanoferrate(II)
dc.subjectperiodate
dc.subjectruthenium(III)
dc.titleSpectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity on Oxidation of Hexacyanoferrate(II) by Periodate Ion in Water Samples
dc.title.alternativeСпектрофотометричне визначення рутенію з використанням його каталітичної активності на окиснення гексацианоферрата(II) періодатним йоном в зразках води
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Srivastava A., Sharma V., Prajapati A., Srivastava N., Naik R. M., 2019
dc.contributor.affiliationG.L.A. University
dc.contributor.affiliationD.D.U. Gorakhpur University
dc.contributor.affiliationLucknow University
dc.format.pages5
dc.identifier.citationenSpectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity on Oxidation of Hexacyanoferrate(II) by Periodate Ion in Water Samples / Abhishek Srivastava, Vivek Sharma, Anjali Prajapati, Neetu Srivastava, R. M. Naik // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 275–279.
dc.relation.references1. BalcerzakM.: Rev. Anal. Chem., 2002, 32, 181. https://doi.org/10.1080/10408340290765524
dc.relation.references2. Druskovic V., Vojkovic V., Jelic T.: Croatica Chem. Acta, 2005, Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity… 279
dc.relation.references3. Berggren K., Steinberg T., Lauber W. et al.: Anal. Biochem., 1999, 276, 129. https://doi.org/10.1006/abio.1999.4364
dc.relation.references4. Lindino C., Bulhoes L.: J. Braz. Chem. Soc., 2004, 15, 178. https://doi.org/10.1590/S0103-50532004000200004
dc.relation.references5. Alarfa N., El-Razeq S.: J. Pharm. Biomed. Anal., 2006, 41, 1423. https://doi.org/10.1016/j.jpba.2006.03.011
dc.relation.references6. Zhou Z., Zhang I.: Adv. Mater. Res., 2013, 602-604, 1289. https://doi.org/10.4028/www.scientific.net/AMR.602-604.1289
dc.relation.references7. Zhou Z., Zhang I.: Appl. MechanicsMater., 2012, 217-219, 2397. https://doi.org/10.4028/www.scientific.net/AMM.217-219.2397
dc.relation.references8. Byadagi K., Nandibewoor S., Chimatadar S.: Acta Chim. Slov., 2013, 60, 617.
dc.relation.references9. Sharanabasamma K., Angadi A., Tuwar S.: The Open Catal. J., 2011, 4, 1. https://doi.org/10.2174/1876214X01104010001
dc.relation.references10. KeyvanfardM.:World Acad. Sci. Eng. Tech. 2008, 43.
dc.relation.references11. Hosamani R., Nandibewoor S.: J. Chem. Sci., 2009, 121, 275. https://doi.org/10.1007/s12039-009-0030-y
dc.relation.references12. Srivastava S., Chaudhary L., Singh K.: Int. J. Res. in Phys. Chem., 2012, 2, 6.
dc.relation.references13. Babasaheb D., Bhosale A., Gokavib G.: Adv. Appl. Sci. Res. 2012, 3, 785.
dc.relation.references14. Mishra K., Chaturvedi R., ShuklaM.: Ind. J. Chem. 2010, 49A, 185.
dc.relation.references15. Kumar A., Reddy P., Reddy V.: Int. J. ChemTech. Res., 2013, 5, 1442.
dc.relation.references16. RitikaM., Barhate V.: Int. J. ChemTech. Res., 2013, 5, 1578.
dc.relation.references17. Sateesh B., Shastry V., Shashidhar S., Manoj K.: Int. J. Chem. Sci., 2014, 14, 1109.
dc.relation.references18. Fawaz A.: J. Chem. Sci., 2016, 128, 733. https://doi.org/10.1007/s12039-016-1067-3
dc.relation.references19. Gorakh S., Antonio D., Jyoti G. et al.: Chem. Commun., 2013, 49, 11533. https://doi.org/10.1039/c3cc46239k
dc.relation.references20. Lakomska I., FandzlochM., Muziol T. et al.: Dalton Trans., 2013, 42, 6219. https://doi.org/10.1039/c2dt32216a
dc.relation.references21. Sharma A., Gangrade, Bakshi D., John J.: Int. J. ChemTech. Res., 2014, 4, 828.
dc.relation.references22. Schoekel A., Melke J., BurnsM. et al.: J. Power Sources, 2016, 301, 210. https://doi.org/10.1016/j.jpowsour.2015.09.119
dc.relation.references23. Hsieh Y., Zang Y., Su D. et al.: Nat. Commun., 2013, 2466. https://doi.org/10.1038/ncomms3466
dc.relation.references24. Messori L., Camarri M., Ferraro T. et al.: A.C.S. Med. Chem. Lett., 2013, 4, 1124. https://doi.org/10.1021/ml400390c
dc.relation.references25. Brunken S., Kratzig A., Bogdanoff P. et al.: Thin Solid Films, 2013, 527, 16. https://doi.org/10.1016/j.tsf.2012.12.037
dc.relation.references26. Madan P., Barhate V.: Int. J. Sci. Res., 2016, 5, 778.
dc.relation.references27. Shelar S., Bhor R., AnuseM., Naval R.: Sep. Sci. Tech., 2015, 50, 1190. https://doi.org/10.1080/01496395.2014.983245
dc.relation.references28. Prasad S., Naik R., Srivastava A.: Spectrochim. Acta A, 2008, 69, 193. https://doi.org/10.1016/j.saa.2007.03.030
dc.relation.references29. Naik R., Srivastava A., Prasad S.: Spectrochim. Acta A, 2008, 70, 958. https://doi.org/10.1016/j.saa.2007.10.011
dc.relation.references30. Zhou Z., Zhang L.: Appl. Mech. Mater., 2012, 204-208, 4067.
dc.relation.references31. Sreekanth B., Jonnalagadda, Brijesh P.: Anal. Lett., 2011, 1868.
dc.relation.references32. Jonnalagadda S., Chinake C., Love I.: Fresenius Anal. Chem., 1994, 349, 829. https://doi.org/10.1007/BF00323114
dc.relation.references33. KeyvanfardM., Rezaei B.: Can. J. Anal. Sci. Spectrosc., 2005, 50, 221.
dc.relation.references34. Crouch S., Scheeline A., Kirkor E.: Anal. Chem., 2000, 72, 53. https://doi.org/10.1021/a1000004b
dc.relation.references35. Prasad S.: Asian J. Chem., 2002, 14, 799.
dc.relation.references36. Prasad K., Rao N.: React. Kinet. Catal. Lett., 1995, 56, 273. https://doi.org/10.1007/BF02076032
dc.relation.references37. Khayamian T., Ensafi A., Atabati M.: Anal. Lett., 2002, 35, 2039. https://doi.org/10.1081/AL-120014292
dc.relation.references38. Bhagwat V., Vijay R., Jonnalagadda S., Pare B.: Indian J. Chem. Technol., 2006, 13, 644.
dc.relation.references39. Naik R., Srivastava A., Asthana A.: J. Iran. Chem. Soc., 2008, 5, 29. https://doi.org/10.1007/BF03245812
dc.relation.referencesen1. BalcerzakM., Rev. Anal. Chem., 2002, 32, 181. https://doi.org/10.1080/10408340290765524
dc.relation.referencesen2. Druskovic V., Vojkovic V., Jelic T., Croatica Chem. Acta, 2005, Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity… 279
dc.relation.referencesen3. Berggren K., Steinberg T., Lauber W. et al., Anal. Biochem., 1999, 276, 129. https://doi.org/10.1006/abio.1999.4364
dc.relation.referencesen4. Lindino C., Bulhoes L., J. Braz. Chem. Soc., 2004, 15, 178. https://doi.org/10.1590/S0103-50532004000200004
dc.relation.referencesen5. Alarfa N., El-Razeq S., J. Pharm. Biomed. Anal., 2006, 41, 1423. https://doi.org/10.1016/j.jpba.2006.03.011
dc.relation.referencesen6. Zhou Z., Zhang I., Adv. Mater. Res., 2013, 602-604, 1289. https://doi.org/10.4028/www.scientific.net/AMR.602-604.1289
dc.relation.referencesen7. Zhou Z., Zhang I., Appl. MechanicsMater., 2012, 217-219, 2397. https://doi.org/10.4028/www.scientific.net/AMM.217-219.2397
dc.relation.referencesen8. Byadagi K., Nandibewoor S., Chimatadar S., Acta Chim. Slov., 2013, 60, 617.
dc.relation.referencesen9. Sharanabasamma K., Angadi A., Tuwar S., The Open Catal. J., 2011, 4, 1. https://doi.org/10.2174/1876214X01104010001
dc.relation.referencesen10. KeyvanfardM.:World Acad. Sci. Eng. Tech. 2008, 43.
dc.relation.referencesen11. Hosamani R., Nandibewoor S., J. Chem. Sci., 2009, 121, 275. https://doi.org/10.1007/s12039-009-0030-y
dc.relation.referencesen12. Srivastava S., Chaudhary L., Singh K., Int. J. Res. in Phys. Chem., 2012, 2, 6.
dc.relation.referencesen13. Babasaheb D., Bhosale A., Gokavib G., Adv. Appl. Sci. Res. 2012, 3, 785.
dc.relation.referencesen14. Mishra K., Chaturvedi R., ShuklaM., Ind. J. Chem. 2010, 49A, 185.
dc.relation.referencesen15. Kumar A., Reddy P., Reddy V., Int. J. ChemTech. Res., 2013, 5, 1442.
dc.relation.referencesen16. RitikaM., Barhate V., Int. J. ChemTech. Res., 2013, 5, 1578.
dc.relation.referencesen17. Sateesh B., Shastry V., Shashidhar S., Manoj K., Int. J. Chem. Sci., 2014, 14, 1109.
dc.relation.referencesen18. Fawaz A., J. Chem. Sci., 2016, 128, 733. https://doi.org/10.1007/s12039-016-1067-3
dc.relation.referencesen19. Gorakh S., Antonio D., Jyoti G. et al., Chem. Commun., 2013, 49, 11533. https://doi.org/10.1039/P.3cc46239k
dc.relation.referencesen20. Lakomska I., FandzlochM., Muziol T. et al., Dalton Trans., 2013, 42, 6219. https://doi.org/10.1039/P.2dt32216a
dc.relation.referencesen21. Sharma A., Gangrade, Bakshi D., John J., Int. J. ChemTech. Res., 2014, 4, 828.
dc.relation.referencesen22. Schoekel A., Melke J., BurnsM. et al., J. Power Sources, 2016, 301, 210. https://doi.org/10.1016/j.jpowsour.2015.09.119
dc.relation.referencesen23. Hsieh Y., Zang Y., Su D. et al., Nat. Commun., 2013, 2466. https://doi.org/10.1038/ncomms3466
dc.relation.referencesen24. Messori L., Camarri M., Ferraro T. et al., A.C.S. Med. Chem. Lett., 2013, 4, 1124. https://doi.org/10.1021/ml400390c
dc.relation.referencesen25. Brunken S., Kratzig A., Bogdanoff P. et al., Thin Solid Films, 2013, 527, 16. https://doi.org/10.1016/j.tsf.2012.12.037
dc.relation.referencesen26. Madan P., Barhate V., Int. J. Sci. Res., 2016, 5, 778.
dc.relation.referencesen27. Shelar S., Bhor R., AnuseM., Naval R., Sep. Sci. Tech., 2015, 50, 1190. https://doi.org/10.1080/01496395.2014.983245
dc.relation.referencesen28. Prasad S., Naik R., Srivastava A., Spectrochim. Acta A, 2008, 69, 193. https://doi.org/10.1016/j.saa.2007.03.030
dc.relation.referencesen29. Naik R., Srivastava A., Prasad S., Spectrochim. Acta A, 2008, 70, 958. https://doi.org/10.1016/j.saa.2007.10.011
dc.relation.referencesen30. Zhou Z., Zhang L., Appl. Mech. Mater., 2012, 204-208, 4067.
dc.relation.referencesen31. Sreekanth B., Jonnalagadda, Brijesh P., Anal. Lett., 2011, 1868.
dc.relation.referencesen32. Jonnalagadda S., Chinake C., Love I., Fresenius Anal. Chem., 1994, 349, 829. https://doi.org/10.1007/BF00323114
dc.relation.referencesen33. KeyvanfardM., Rezaei B., Can. J. Anal. Sci. Spectrosc., 2005, 50, 221.
dc.relation.referencesen34. Crouch S., Scheeline A., Kirkor E., Anal. Chem., 2000, 72, 53. https://doi.org/10.1021/a1000004b
dc.relation.referencesen35. Prasad S., Asian J. Chem., 2002, 14, 799.
dc.relation.referencesen36. Prasad K., Rao N., React. Kinet. Catal. Lett., 1995, 56, 273. https://doi.org/10.1007/BF02076032
dc.relation.referencesen37. Khayamian T., Ensafi A., Atabati M., Anal. Lett., 2002, 35, 2039. https://doi.org/10.1081/AL-120014292
dc.relation.referencesen38. Bhagwat V., Vijay R., Jonnalagadda S., Pare B., Indian J. Chem. Technol., 2006, 13, 644.
dc.relation.referencesen39. Naik R., Srivastava A., Asthana A., J. Iran. Chem. Soc., 2008, 5, 29. https://doi.org/10.1007/BF03245812
dc.citation.issue3
dc.citation.spage275
dc.citation.epage279
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3

Files in This Item:
File Description SizeFormat 
2019v13n3_Srivastava_A-Spectrophotometric_Determination_275-279.pdf309.39 kBAdobe PDFView/Open
2019v13n3_Srivastava_A-Spectrophotometric_Determination_275-279__COVER.png545.13 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.