DC Field | Value | Language |
dc.contributor.author | Srivastava, Abhishek | |
dc.contributor.author | Sharma, Vivek | |
dc.contributor.author | Prajapati, Anjali | |
dc.contributor.author | Srivastava, Neetu | |
dc.contributor.author | Naik, R. M. | |
dc.date.accessioned | 2020-03-02T13:09:21Z | - |
dc.date.available | 2020-03-02T13:09:21Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity on Oxidation of Hexacyanoferrate(II) by Periodate Ion in Water Samples / Abhishek Srivastava, Vivek Sharma, Anjali Prajapati, Neetu Srivastava, R. M. Naik // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 275–279. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46477 | - |
dc.description.abstract | Для визначення рутенію(III) на мікрорівні
застосовано каталітичний ефект хлориду рутенію на зов-
нішнє перенесення електронів гексаціаноферрату(II) періодат-
ним йоном у водному лужному середовищі. Встановлено
оптимальні умови реакції та необхідний час. Лінійна
залежність між поглинальною здатністю та концентрацією
Ru(III) використана для визначення слідів Ru(III). Показано, що
додавання інтерферентних йонів (в концентраціях, до 71 разів
вищих за концентрацію Ru) істотно не впливає на ката-
літичну активність Ru(III) при окисненні гексаціано-
феррату(II) періодатним йоном. Поліамінокарбоксилати
пригнічують його каталітичну здатність до максимального
значення, якщо допустима межа є більшою за 14,29.
Враховуючи відтворюваність, стабільність та селективность
цього методу, запропоновано використовувати його для різних
типів зразків води для визначення рутенію(III) на мікрорівні. | |
dc.description.abstract | The catalytic effect of ruthenium chloride on
the outer sphere electron transfer of hexacyanoferrate(II)
by periodate ion in aqueous alkaline medium has been
effectively employed to determine ruthenium(III) at micro
level. The optimum reaction condition has been
established and fixed time procedure is adopted. A linear
relationship between changes in absorbance and added
Ru(III) concentration has been utilized for the trace level
determination of Ru(III). The results reveal that the
addition of interfering ions (up to 71 times higher
concentration of Ru) does not have significant effect on
the catalytic activity of Ru(III) on oxidation of
hexacyanoferrate(II) by periodate ion. Polyaminocarboxylates
(HEDTA, EDTA and IDA) suppress its
catalytic power to maximum, if tolerance limit is more
than 14.29 times. Due to the reproducibility, stability and
selectivity, this method can also be quantitatively applied
in different types of water samples for determination of
ruthenium(III) at micro level. | |
dc.format.extent | 275-279 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (13), 2019 | |
dc.relation.uri | https://doi.org/10.1080/10408340290765524 | |
dc.relation.uri | https://doi.org/10.1006/abio.1999.4364 | |
dc.relation.uri | https://doi.org/10.1590/S0103-50532004000200004 | |
dc.relation.uri | https://doi.org/10.1016/j.jpba.2006.03.011 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMR.602-604.1289 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMM.217-219.2397 | |
dc.relation.uri | https://doi.org/10.2174/1876214X01104010001 | |
dc.relation.uri | https://doi.org/10.1007/s12039-009-0030-y | |
dc.relation.uri | https://doi.org/10.1007/s12039-016-1067-3 | |
dc.relation.uri | https://doi.org/10.1039/c3cc46239k | |
dc.relation.uri | https://doi.org/10.1039/c2dt32216a | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2015.09.119 | |
dc.relation.uri | https://doi.org/10.1038/ncomms3466 | |
dc.relation.uri | https://doi.org/10.1021/ml400390c | |
dc.relation.uri | https://doi.org/10.1016/j.tsf.2012.12.037 | |
dc.relation.uri | https://doi.org/10.1080/01496395.2014.983245 | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2007.03.030 | |
dc.relation.uri | https://doi.org/10.1016/j.saa.2007.10.011 | |
dc.relation.uri | https://doi.org/10.1007/BF00323114 | |
dc.relation.uri | https://doi.org/10.1021/a1000004b | |
dc.relation.uri | https://doi.org/10.1007/BF02076032 | |
dc.relation.uri | https://doi.org/10.1081/AL-120014292 | |
dc.relation.uri | https://doi.org/10.1007/BF03245812 | |
dc.subject | кінетика | |
dc.subject | механізм | |
dc.subject | гексаціаноферрат(II) | |
dc.subject | періодат | |
dc.subject | рутеній(III) | |
dc.subject | kinetics | |
dc.subject | mechanism | |
dc.subject | hexacyanoferrate(II) | |
dc.subject | periodate | |
dc.subject | ruthenium(III) | |
dc.title | Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity on Oxidation of Hexacyanoferrate(II) by Periodate Ion in Water Samples | |
dc.title.alternative | Спектрофотометричне визначення рутенію з використанням його каталітичної активності на окиснення гексацианоферрата(II) періодатним йоном в зразках води | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Srivastava A., Sharma V., Prajapati A., Srivastava N., Naik R. M., 2019 | |
dc.contributor.affiliation | G.L.A. University | |
dc.contributor.affiliation | D.D.U. Gorakhpur University | |
dc.contributor.affiliation | Lucknow University | |
dc.format.pages | 5 | |
dc.identifier.citationen | Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity on Oxidation of Hexacyanoferrate(II) by Periodate Ion in Water Samples / Abhishek Srivastava, Vivek Sharma, Anjali Prajapati, Neetu Srivastava, R. M. Naik // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 275–279. | |
dc.relation.references | 1. BalcerzakM.: Rev. Anal. Chem., 2002, 32, 181. https://doi.org/10.1080/10408340290765524 | |
dc.relation.references | 2. Druskovic V., Vojkovic V., Jelic T.: Croatica Chem. Acta, 2005, Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity… 279 | |
dc.relation.references | 3. Berggren K., Steinberg T., Lauber W. et al.: Anal. Biochem., 1999, 276, 129. https://doi.org/10.1006/abio.1999.4364 | |
dc.relation.references | 4. Lindino C., Bulhoes L.: J. Braz. Chem. Soc., 2004, 15, 178. https://doi.org/10.1590/S0103-50532004000200004 | |
dc.relation.references | 5. Alarfa N., El-Razeq S.: J. Pharm. Biomed. Anal., 2006, 41, 1423. https://doi.org/10.1016/j.jpba.2006.03.011 | |
dc.relation.references | 6. Zhou Z., Zhang I.: Adv. Mater. Res., 2013, 602-604, 1289. https://doi.org/10.4028/www.scientific.net/AMR.602-604.1289 | |
dc.relation.references | 7. Zhou Z., Zhang I.: Appl. MechanicsMater., 2012, 217-219, 2397. https://doi.org/10.4028/www.scientific.net/AMM.217-219.2397 | |
dc.relation.references | 8. Byadagi K., Nandibewoor S., Chimatadar S.: Acta Chim. Slov., 2013, 60, 617. | |
dc.relation.references | 9. Sharanabasamma K., Angadi A., Tuwar S.: The Open Catal. J., 2011, 4, 1. https://doi.org/10.2174/1876214X01104010001 | |
dc.relation.references | 10. KeyvanfardM.:World Acad. Sci. Eng. Tech. 2008, 43. | |
dc.relation.references | 11. Hosamani R., Nandibewoor S.: J. Chem. Sci., 2009, 121, 275. https://doi.org/10.1007/s12039-009-0030-y | |
dc.relation.references | 12. Srivastava S., Chaudhary L., Singh K.: Int. J. Res. in Phys. Chem., 2012, 2, 6. | |
dc.relation.references | 13. Babasaheb D., Bhosale A., Gokavib G.: Adv. Appl. Sci. Res. 2012, 3, 785. | |
dc.relation.references | 14. Mishra K., Chaturvedi R., ShuklaM.: Ind. J. Chem. 2010, 49A, 185. | |
dc.relation.references | 15. Kumar A., Reddy P., Reddy V.: Int. J. ChemTech. Res., 2013, 5, 1442. | |
dc.relation.references | 16. RitikaM., Barhate V.: Int. J. ChemTech. Res., 2013, 5, 1578. | |
dc.relation.references | 17. Sateesh B., Shastry V., Shashidhar S., Manoj K.: Int. J. Chem. Sci., 2014, 14, 1109. | |
dc.relation.references | 18. Fawaz A.: J. Chem. Sci., 2016, 128, 733. https://doi.org/10.1007/s12039-016-1067-3 | |
dc.relation.references | 19. Gorakh S., Antonio D., Jyoti G. et al.: Chem. Commun., 2013, 49, 11533. https://doi.org/10.1039/c3cc46239k | |
dc.relation.references | 20. Lakomska I., FandzlochM., Muziol T. et al.: Dalton Trans., 2013, 42, 6219. https://doi.org/10.1039/c2dt32216a | |
dc.relation.references | 21. Sharma A., Gangrade, Bakshi D., John J.: Int. J. ChemTech. Res., 2014, 4, 828. | |
dc.relation.references | 22. Schoekel A., Melke J., BurnsM. et al.: J. Power Sources, 2016, 301, 210. https://doi.org/10.1016/j.jpowsour.2015.09.119 | |
dc.relation.references | 23. Hsieh Y., Zang Y., Su D. et al.: Nat. Commun., 2013, 2466. https://doi.org/10.1038/ncomms3466 | |
dc.relation.references | 24. Messori L., Camarri M., Ferraro T. et al.: A.C.S. Med. Chem. Lett., 2013, 4, 1124. https://doi.org/10.1021/ml400390c | |
dc.relation.references | 25. Brunken S., Kratzig A., Bogdanoff P. et al.: Thin Solid Films, 2013, 527, 16. https://doi.org/10.1016/j.tsf.2012.12.037 | |
dc.relation.references | 26. Madan P., Barhate V.: Int. J. Sci. Res., 2016, 5, 778. | |
dc.relation.references | 27. Shelar S., Bhor R., AnuseM., Naval R.: Sep. Sci. Tech., 2015, 50, 1190. https://doi.org/10.1080/01496395.2014.983245 | |
dc.relation.references | 28. Prasad S., Naik R., Srivastava A.: Spectrochim. Acta A, 2008, 69, 193. https://doi.org/10.1016/j.saa.2007.03.030 | |
dc.relation.references | 29. Naik R., Srivastava A., Prasad S.: Spectrochim. Acta A, 2008, 70, 958. https://doi.org/10.1016/j.saa.2007.10.011 | |
dc.relation.references | 30. Zhou Z., Zhang L.: Appl. Mech. Mater., 2012, 204-208, 4067. | |
dc.relation.references | 31. Sreekanth B., Jonnalagadda, Brijesh P.: Anal. Lett., 2011, 1868. | |
dc.relation.references | 32. Jonnalagadda S., Chinake C., Love I.: Fresenius Anal. Chem., 1994, 349, 829. https://doi.org/10.1007/BF00323114 | |
dc.relation.references | 33. KeyvanfardM., Rezaei B.: Can. J. Anal. Sci. Spectrosc., 2005, 50, 221. | |
dc.relation.references | 34. Crouch S., Scheeline A., Kirkor E.: Anal. Chem., 2000, 72, 53. https://doi.org/10.1021/a1000004b | |
dc.relation.references | 35. Prasad S.: Asian J. Chem., 2002, 14, 799. | |
dc.relation.references | 36. Prasad K., Rao N.: React. Kinet. Catal. Lett., 1995, 56, 273. https://doi.org/10.1007/BF02076032 | |
dc.relation.references | 37. Khayamian T., Ensafi A., Atabati M.: Anal. Lett., 2002, 35, 2039. https://doi.org/10.1081/AL-120014292 | |
dc.relation.references | 38. Bhagwat V., Vijay R., Jonnalagadda S., Pare B.: Indian J. Chem. Technol., 2006, 13, 644. | |
dc.relation.references | 39. Naik R., Srivastava A., Asthana A.: J. Iran. Chem. Soc., 2008, 5, 29. https://doi.org/10.1007/BF03245812 | |
dc.relation.referencesen | 1. BalcerzakM., Rev. Anal. Chem., 2002, 32, 181. https://doi.org/10.1080/10408340290765524 | |
dc.relation.referencesen | 2. Druskovic V., Vojkovic V., Jelic T., Croatica Chem. Acta, 2005, Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity… 279 | |
dc.relation.referencesen | 3. Berggren K., Steinberg T., Lauber W. et al., Anal. Biochem., 1999, 276, 129. https://doi.org/10.1006/abio.1999.4364 | |
dc.relation.referencesen | 4. Lindino C., Bulhoes L., J. Braz. Chem. Soc., 2004, 15, 178. https://doi.org/10.1590/S0103-50532004000200004 | |
dc.relation.referencesen | 5. Alarfa N., El-Razeq S., J. Pharm. Biomed. Anal., 2006, 41, 1423. https://doi.org/10.1016/j.jpba.2006.03.011 | |
dc.relation.referencesen | 6. Zhou Z., Zhang I., Adv. Mater. Res., 2013, 602-604, 1289. https://doi.org/10.4028/www.scientific.net/AMR.602-604.1289 | |
dc.relation.referencesen | 7. Zhou Z., Zhang I., Appl. MechanicsMater., 2012, 217-219, 2397. https://doi.org/10.4028/www.scientific.net/AMM.217-219.2397 | |
dc.relation.referencesen | 8. Byadagi K., Nandibewoor S., Chimatadar S., Acta Chim. Slov., 2013, 60, 617. | |
dc.relation.referencesen | 9. Sharanabasamma K., Angadi A., Tuwar S., The Open Catal. J., 2011, 4, 1. https://doi.org/10.2174/1876214X01104010001 | |
dc.relation.referencesen | 10. KeyvanfardM.:World Acad. Sci. Eng. Tech. 2008, 43. | |
dc.relation.referencesen | 11. Hosamani R., Nandibewoor S., J. Chem. Sci., 2009, 121, 275. https://doi.org/10.1007/s12039-009-0030-y | |
dc.relation.referencesen | 12. Srivastava S., Chaudhary L., Singh K., Int. J. Res. in Phys. Chem., 2012, 2, 6. | |
dc.relation.referencesen | 13. Babasaheb D., Bhosale A., Gokavib G., Adv. Appl. Sci. Res. 2012, 3, 785. | |
dc.relation.referencesen | 14. Mishra K., Chaturvedi R., ShuklaM., Ind. J. Chem. 2010, 49A, 185. | |
dc.relation.referencesen | 15. Kumar A., Reddy P., Reddy V., Int. J. ChemTech. Res., 2013, 5, 1442. | |
dc.relation.referencesen | 16. RitikaM., Barhate V., Int. J. ChemTech. Res., 2013, 5, 1578. | |
dc.relation.referencesen | 17. Sateesh B., Shastry V., Shashidhar S., Manoj K., Int. J. Chem. Sci., 2014, 14, 1109. | |
dc.relation.referencesen | 18. Fawaz A., J. Chem. Sci., 2016, 128, 733. https://doi.org/10.1007/s12039-016-1067-3 | |
dc.relation.referencesen | 19. Gorakh S., Antonio D., Jyoti G. et al., Chem. Commun., 2013, 49, 11533. https://doi.org/10.1039/P.3cc46239k | |
dc.relation.referencesen | 20. Lakomska I., FandzlochM., Muziol T. et al., Dalton Trans., 2013, 42, 6219. https://doi.org/10.1039/P.2dt32216a | |
dc.relation.referencesen | 21. Sharma A., Gangrade, Bakshi D., John J., Int. J. ChemTech. Res., 2014, 4, 828. | |
dc.relation.referencesen | 22. Schoekel A., Melke J., BurnsM. et al., J. Power Sources, 2016, 301, 210. https://doi.org/10.1016/j.jpowsour.2015.09.119 | |
dc.relation.referencesen | 23. Hsieh Y., Zang Y., Su D. et al., Nat. Commun., 2013, 2466. https://doi.org/10.1038/ncomms3466 | |
dc.relation.referencesen | 24. Messori L., Camarri M., Ferraro T. et al., A.C.S. Med. Chem. Lett., 2013, 4, 1124. https://doi.org/10.1021/ml400390c | |
dc.relation.referencesen | 25. Brunken S., Kratzig A., Bogdanoff P. et al., Thin Solid Films, 2013, 527, 16. https://doi.org/10.1016/j.tsf.2012.12.037 | |
dc.relation.referencesen | 26. Madan P., Barhate V., Int. J. Sci. Res., 2016, 5, 778. | |
dc.relation.referencesen | 27. Shelar S., Bhor R., AnuseM., Naval R., Sep. Sci. Tech., 2015, 50, 1190. https://doi.org/10.1080/01496395.2014.983245 | |
dc.relation.referencesen | 28. Prasad S., Naik R., Srivastava A., Spectrochim. Acta A, 2008, 69, 193. https://doi.org/10.1016/j.saa.2007.03.030 | |
dc.relation.referencesen | 29. Naik R., Srivastava A., Prasad S., Spectrochim. Acta A, 2008, 70, 958. https://doi.org/10.1016/j.saa.2007.10.011 | |
dc.relation.referencesen | 30. Zhou Z., Zhang L., Appl. Mech. Mater., 2012, 204-208, 4067. | |
dc.relation.referencesen | 31. Sreekanth B., Jonnalagadda, Brijesh P., Anal. Lett., 2011, 1868. | |
dc.relation.referencesen | 32. Jonnalagadda S., Chinake C., Love I., Fresenius Anal. Chem., 1994, 349, 829. https://doi.org/10.1007/BF00323114 | |
dc.relation.referencesen | 33. KeyvanfardM., Rezaei B., Can. J. Anal. Sci. Spectrosc., 2005, 50, 221. | |
dc.relation.referencesen | 34. Crouch S., Scheeline A., Kirkor E., Anal. Chem., 2000, 72, 53. https://doi.org/10.1021/a1000004b | |
dc.relation.referencesen | 35. Prasad S., Asian J. Chem., 2002, 14, 799. | |
dc.relation.referencesen | 36. Prasad K., Rao N., React. Kinet. Catal. Lett., 1995, 56, 273. https://doi.org/10.1007/BF02076032 | |
dc.relation.referencesen | 37. Khayamian T., Ensafi A., Atabati M., Anal. Lett., 2002, 35, 2039. https://doi.org/10.1081/AL-120014292 | |
dc.relation.referencesen | 38. Bhagwat V., Vijay R., Jonnalagadda S., Pare B., Indian J. Chem. Technol., 2006, 13, 644. | |
dc.relation.referencesen | 39. Naik R., Srivastava A., Asthana A., J. Iran. Chem. Soc., 2008, 5, 29. https://doi.org/10.1007/BF03245812 | |
dc.citation.issue | 3 | |
dc.citation.spage | 275 | |
dc.citation.epage | 279 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3
|