Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46472
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBansal, Shobha
dc.contributor.authorKumar, Yogendra
dc.contributor.authorDas, Dipak Kumar
dc.contributor.authorSingh, Prabal Pratap
dc.date.accessioned2020-03-02T12:28:14Z-
dc.date.available2020-03-02T12:28:14Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationHyperactive Magnetically Separable Nano-sized MgFe2O4 Catalyst for the Synthesis of Several Five- and Six-Membered Heterocycles / Shobha Bansal, Yogendra Kumar, Dipak Kumar Das, Prabal Pratap Singh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 163–169.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46472-
dc.description.abstractЗ використанням чистого нітрату заліза та карбонату магнію методом горіння синтезовано наночастки фериту MgFe2O4. Виявлено, що магніто-сепарабельний MgFe2O4 є гіперактивним каталізатором для синтезу широ- кого спектру біологічно активних п'яти та шестичленних гетероциклічних компонентів за умов дефлегмації. Встанов- лено, що вихід сполук є високим, а час реакції найменшим у порівнянні з літературними даними. Сильний електронний натяг Fe3+ відповідає за гіперактивність каталізатора, що було доведено заміщенням Fe3+ іншими тривалентними йонами металів. Показано, що заміна Mg2+ негативно впливає на каталітичну активність. За допомогою розробленої методики синтезовано ряд заміщених моно/біспіримідинів, піримідин-2- ол, піримiдин-2-тіол, піразоли та ізоксазоли внаслідок конденсації монохалконів/1,4-бісхалконів з різними біс- нуклеофілами у присутності гетерогенних магнітних наночастинок MgFe2O4 як каталізатора. Структуру синтезованих сполук визначено за допомогою спектроскопії Фур‘є, 1H, 13С та мас-спектроскопії. Каталізатор можна легко видалити з реакційної суміші за допомогою простого зовнішнього магніту. Показано можливість відновлення та повторного використання наночастинок фериту без помітної зміни в активності навіть після п'яти циклів. Проведено аналіз наночастинок за допомогою рентгено-дифракційного аналізу, трансмісійної електронної та ІЧ-спектроскопії.
dc.description.abstractMgFe2O4 nanoparticle ferrites were synthesized by combustion technique using pure ferric nitrate and magnesium carbonate. The magnetically separable MgFe2O4 MNP’s were found to be hyper active catalyst for the synthesis of a wide range of biologically active five and six-membered heterocyclic moieties at refluxing conditions. Reaction times are lowest in comparison to all reported in literature with excellent yields. Strong electron pull of Fe3+ is responsible for its hyper activity, which has been substantiated by substitution of Fe3+ by other trivalent metal ions. Mg2+ has a unique role because replacement of Mg2+ has poor catalytic activity. The developed protocol has been efficiently utilized for the synthesis of a series of substituted mono/bis pyrimidines, pyrimidin-2-ol, pyrimidin-2-thiol, pyrazoles and isoxazoles by condensing monochalcones/1,4-bischalcones with various bis-nucleophiles in the presence of catalytic amount of heterogenous magnetic MgFe2O4 nanoparticles. The structure of these synthesized compounds was determined by FTIR, 1H, 13C and mass spectra. The catalyst can be removed easily from reaction mixture by using a simple external magnet. Nanoparticles of ferrite were recovered and reused with no appreciable change in the activity even after the five runs. Nanoparticles are characterized by XRD, TEMand IR spectroscopy.
dc.format.extent163-169
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (13), 2019
dc.relation.urihttps://doi.org/10.1039/b504128g
dc.relation.urihttps://doi.org/10.1021/ja060140u
dc.relation.urihttps://doi.org/10.1002/anie.200503445
dc.relation.urihttps://doi.org/10.1021/ol702064x
dc.relation.urihttps://doi.org/10.1002/anie.200702386
dc.relation.urihttps://doi.org/10.1039/b711298j
dc.relation.urihttps://doi.org/10.1021/ol801478y
dc.relation.urihttps://doi.org/10.1039/b823123k
dc.relation.urihttps://doi.org/10.1002/anie.200602866
dc.relation.urihttps://doi.org/10.1016/j.apcata.2011.01.018
dc.relation.urihttps://doi.org/10.1016/j.apcata.2012.09.010
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2013.01.123
dc.relation.urihttps://doi.org/10.1016/j.molcata.2013.03.003
dc.relation.urihttps://doi.org/10.1016/j.catcom.2013.08.006
dc.relation.urihttps://doi.org/10.1039/c3gc40375k
dc.relation.urihttps://doi.org/10.1002/cctc.201300623
dc.relation.urihttps://doi.org/10.1016/S1872-2067(11)60455-5
dc.relation.urihttps://doi.org/10.1016/j.tet.2012.03.008
dc.relation.urihttps://doi.org/10.1016/j.molcata.2012.07.017
dc.relation.urihttps://doi.org/10.1016/j.apcata.2013.04.010
dc.relation.urihttps://doi.org/10.1021/ja053881o
dc.relation.urihttps://doi.org/10.1007/s10562-010-0271-x
dc.relation.urihttps://doi.org/10.1039/c3cy00190c
dc.relation.urihttps://doi.org/10.5012/bkcs.2012.33.8.2546
dc.relation.urihttps://doi.org/10.1016/j.bmc.2010.05.034
dc.relation.urihttps://doi.org/10.1016/S0040-4020(00)00116-2
dc.relation.urihttps://doi.org/10.1021/jm00106a048
dc.relation.urihttps://doi.org/10.1248/cpb.47.857
dc.relation.urihttps://doi.org/10.1016/j.bmcl.2010.01.113
dc.relation.urihttps://doi.org/10.1007/s00044-013-0877-9
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2009.12.068
dc.relation.urihttps://doi.org/10.1016/j.carres.2009.09.002
dc.relation.urihttps://doi.org/10.1002/cbdv.201300009
dc.relation.urihttps://doi.org/10.1002/jhet.2615
dc.relation.urihttps://doi.org/10.1002/jhet.1046
dc.relation.urihttps://doi.org/10.1016/S0040-4020(02)01560-0
dc.relation.urihttps://doi.org/10.4172/2161-0401.1000159
dc.relation.urihttps://doi.org/10.5402/2012/480989
dc.relation.urihttps://doi.org/10.1016/S1872-2067(10)60203-3
dc.relation.urihttps://doi.org/10.2174/1876214X01003010079
dc.relation.urihttps://doi.org/10.2298/JSC0912371M
dc.relation.urihttps://doi.org/10.1002/ejoc.200390117
dc.subjectмагнітні наночастки MgFe2O4
dc.subjectмонохалкони
dc.subject1
dc.subject4-бісхалкони
dc.subjectпіримідин
dc.subjectпіразолін
dc.subjectізоксазолін
dc.subjectзовнішнє магнітне відділення
dc.subjectгетерогенний відновлювальний каталізатор
dc.subjectmagnetic MgFe2O4 nanoparticles
dc.subjectmono chalcones
dc.subject1
dc.subject4-bischalcones
dc.subjectpyrimidines
dc.subjectpyrazolines
dc.subjectisoxazolines
dc.subjectexternal magnetic separation
dc.subjectheterogeneous and reusable catalyst
dc.titleHyperactive Magnetically Separable Nano-sized MgFe2O4 Catalyst for the Synthesis of Several Five- and Six-Membered Heterocycles
dc.title.alternativeГіперактивний магніто-сепарабельний нано-каталізатор Mgfe2o4 для синтезу п‘яти- та шестичленних гетероциклічних сполук
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Bansal S., Kumar Y., Das D., Singh P., 2019
dc.contributor.affiliationGLA University
dc.format.pages7
dc.identifier.citationenHyperactive Magnetically Separable Nano-sized MgFe2O4 Catalyst for the Synthesis of Several Five- and Six-Membered Heterocycles / Shobha Bansal, Yogendra Kumar, Dipak Kumar Das, Prabal Pratap Singh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 163–169.
dc.relation.references1. Gardimalla H., Mandal D., Stevens P. et al.: Chem. Commun., 2005, 4432. https://doi.org/10.1039/b504128g
dc.relation.references2. Abu-Rezig R., Alper H., Wang D., Post M.: J. Am. Chem. Soc., 2006, 128, 5279. https://doi.org/10.1021/ja060140u
dc.relation.references3. Phan N., Gill C., Nguyen J. et al.: Angew. Chem. Int. Ed., 2006, 45, 2209. https://doi.org/10.1002/anie.200503445
dc.relation.references4. Baruwati B., Guin S.: Org. Lett., 2007, 9, 5377. https://doi.org/10.1021/ol702064x
dc.relation.references5. Shokouhimehr M., Piao Y., Kim J. et al.: Angew. Chem. Int. Ed., 2007, 46, 7039. https://doi.org/10.1002/anie.200702386
dc.relation.references6. Chouhan G., Wang D., Alper H.: Chem. Commun., 2007, 4809. https://doi.org/10.1039/b711298j
dc.relation.references7. Liu J., Peng X., Sun W. et al.: Org. Lett., 2008, 10, 3933. https://doi.org/10.1021/ol801478y
dc.relation.references8. Zheng X.,. Luo S., Zhang L., Cheng J.: Green Chem., 2009, 11, 455. https://doi.org/10.1039/b823123k
dc.relation.references9. Lu A-H., Salabas E., Schuth F.: Angew. Chem. Int. Ed., 2007, 46, 1222. https://doi.org/10.1002/anie.200602866
dc.relation.references10. KassaeeM., Masrouri H., Movahedi F.: Appl. Catal. A, 2011, 395, 28. https://doi.org/10.1016/j.apcata.2011.01.018
dc.relation.references11. Esmaeilpour M., Sardarian A., Javidi J.: Appl. Catal. A, 2012, 445-446, 359. https://doi.org/10.1016/j.apcata.2012.09.010
dc.relation.references12. Maleki A.: Tetrahedron Lett., 2013, 54, 2055. https://doi.org/10.1016/j.tetlet.2013.01.123
dc.relation.references13. Kiasat A., Davarpanah J.: J. Mol. Catal. A, 2013, 373, 46. https://doi.org/10.1016/j.molcata.2013.03.003
dc.relation.references14. Zamani F., Izadi E.: Catal. Commun., 2013, 42, 104. https://doi.org/10.1016/j.catcom.2013.08.006
dc.relation.references15. GawandeM., Bonifácio V., Varma R. et al.: Green Chem., 2013, 15, 1226. https://doi.org/10.1039/c3gc40375k
dc.relation.references16. Mahmoudi H., Jafari A.: Chem. Cat. Chem., 2013, 5, 3743. https://doi.org/10.1002/cctc.201300623
dc.relation.references17. Nemati F., Heravi M., Rad R.: Chin. J. Catal., 2012, 33, 1825. https://doi.org/10.1016/S1872-2067(11)60455-5
dc.relation.references18. Du Q., ZhangW., Ma H. et al.: Tetrahedron, 2012, 68, 3577. https://doi.org/10.1016/j.tet.2012.03.008
dc.relation.references19. Yang H., Li S., Wang X. et al.: J. Mol. Catal. A, 2012, 363–364, 404. https://doi.org/10.1016/j.molcata.2012.07.017
dc.relation.references20. Li W., Zhang B., Li X. et al.: Appl. Catal. A, 2013, 459, 65. https://doi.org/10.1016/j.apcata.2013.04.010
dc.relation.references21. Hu A., Yee G., Lin W.: J. Am. Chem. Soc., 2005,127, 12486. https://doi.org/10.1021/ja053881o
dc.relation.references22. Wang P., Kong A., WangW. et al.: Catal. Lett., 2010, 135, 159. https://doi.org/10.1007/s10562-010-0271-x
dc.relation.references23. GawandeM., Rathi A., Nogueira I. et al.: Green Chem., 2013, 15, 1226. https://doi.org/10.1039/c3gc40375k
dc.relation.references24. Atashkar B., Rostami A., Tahmasbi B.: Catal. Sci. Tech., 2013, 3, 2140. https://doi.org/10.1039/c3cy00190c
dc.relation.references25. Alizadeh A., Khodaei M., BeygzadehM. et al.: Bull. Korean Chem. Soc., 2012, 33, 2546. https://doi.org/10.5012/bkcs.2012.33.8.2546
dc.relation.references26. Cheng L., Li H., Sun J. et al.: Bioorg. Med. Chem., 2010, 18, 4606. https://doi.org/10.1016/j.bmc.2010.05.034
dc.relation.references27. Bhatt R.: J. Global Pharma. Tech., 2010, 2, 110.
dc.relation.references28. Kappe C., Shishkin O., Uraya G., Verdinoa P.: Tetrahedron, 2000, 56, 1859. https://doi.org/10.1016/S0040-4020(00)00116-2
dc.relation.references29. Amrutkar S., Bhagat U., Pargharmol P. et al.: Int. Pharm. Pharm. Sci.ence 2010, 2, 84.
dc.relation.references30. Atwal K., Swanson B., Unger S. et al.: J. Med. Chem. 1991, 34, 2248. https://doi.org/10.1021/jm00106a048
dc.relation.references31. Kudo N., Futura S.: Chem. Pharma. Bull., 1999, 47, 857. https://doi.org/10.1248/cpb.47.857
dc.relation.references32. Bonsei M., LoizzoM., Statti G. et al.: Bioorg. Med. Chem. Lett., 2010, 20, 1990. https://doi.org/10.1016/j.bmcl.2010.01.113
dc.relation.references33. Yar M., AbdullahM., Majeed J.:World Acad. Sci. Eng. Tech., 2006, 55, 593.
dc.relation.references34. Siddiqui S., Azam A.:Med. Chem. Res., 2014, 23, 2976. https://doi.org/10.1007/s00044-013-0877-9
dc.relation.references35. Kanagarajan V., Thanusu J., GopalakrishnaM.: Eur. J. Med. Chem., 2010, 45, 1583. https://doi.org/10.1016/j.ejmech.2009.12.068
dc.relation.references36. Thanh N., Mai N.: Carbohyd. Res., 2009, 344, 2399. https://doi.org/10.1016/j.carres.2009.09.002
dc.relation.references37. Bhat A., ArshadM., Lee E. et al.: Chem. Biodiver., 2013, 10, 2267. https://doi.org/10.1002/cbdv.201300009
dc.relation.references38. Hasan A., KhaleeqM., Raizi U.: J. Org. Chem., 2010, 22, 5581.
dc.relation.references39. Butta R., Donthamsetty S., Adivireddy P., Venkatapuram P.: J. Heterocycl. Chem., 2017, 54, 524. https://doi.org/10.1002/jhet.2615
dc.relation.references40. Kanagarajan V., How G. A., Siu C. N., GopalkrishnanM.: J. Heterocycl. Chem., 2013, 50, 396. https://doi.org/10.1002/jhet.1046.
dc.relation.references41. Singh J., Dulawat M., Jaitawat N. et al.: Ind. J. Chem., 2012, 51B, 1623.
dc.relation.references42. Varga L., Nagy T., Kovesdi I. et al.: Tetrahedron, 2003, 59, 655. https://doi.org/10.1016/S0040-4020(02)01560-0
dc.relation.references43. Ghoneim A., El-Farargy A.: Org. Chem Curr. Res., 2016, 5, 1. https://doi.org/10.4172/2161-0401.1000159
dc.relation.references44. Jetti S., Verma D., Jain S.: ISRN Org. Chem., 2012. https://doi.org/10.5402/2012/480989
dc.relation.references45. Fazaeli R., Aliyan H., Mallakpour S. et al.: Chin. J. Catal., 2011, 32, 582. https://doi.org/10.1016/S1872-2067(10)60203-3
dc.relation.references46. Fazaeli R., Aliyan H., Bordbar M., Mohammadi E.: The Open Catal. J., 2010, 3, 79. https://doi.org/10.2174/1876214X01003010079
dc.relation.references47. Aliyan H., Fazaeli R., Tajsaeed N.: Iranian J. Catal. 2013, 3, 99.
dc.relation.references48. Maleki B., Azarifar D., Moghaddam A. et al.: J. Serb. Chem. Soc., 2009, 74, 1371. https://doi.org/10.2298/JSC0912371M
dc.relation.references49. Pinto D., Silva A., Cavaleiro J., Elguero J.: Eur. J. Org. Chem., 2003, 4, 747. https://doi.org/10.1002/ejoc.200390117
dc.relation.references50. Kavitha N., Divekar K., Priyadarshani B., Gajanan S., Manjunath M.: Der Pharma Chemica, 2011, 3, 55.
dc.relation.referencesen1. Gardimalla H., Mandal D., Stevens P. et al., Chem. Commun., 2005, 4432. https://doi.org/10.1039/b504128g
dc.relation.referencesen2. Abu-Rezig R., Alper H., Wang D., Post M., J. Am. Chem. Soc., 2006, 128, 5279. https://doi.org/10.1021/ja060140u
dc.relation.referencesen3. Phan N., Gill C., Nguyen J. et al., Angew. Chem. Int. Ed., 2006, 45, 2209. https://doi.org/10.1002/anie.200503445
dc.relation.referencesen4. Baruwati B., Guin S., Org. Lett., 2007, 9, 5377. https://doi.org/10.1021/ol702064x
dc.relation.referencesen5. Shokouhimehr M., Piao Y., Kim J. et al., Angew. Chem. Int. Ed., 2007, 46, 7039. https://doi.org/10.1002/anie.200702386
dc.relation.referencesen6. Chouhan G., Wang D., Alper H., Chem. Commun., 2007, 4809. https://doi.org/10.1039/b711298j
dc.relation.referencesen7. Liu J., Peng X., Sun W. et al., Org. Lett., 2008, 10, 3933. https://doi.org/10.1021/ol801478y
dc.relation.referencesen8. Zheng X.,. Luo S., Zhang L., Cheng J., Green Chem., 2009, 11, 455. https://doi.org/10.1039/b823123k
dc.relation.referencesen9. Lu A-H., Salabas E., Schuth F., Angew. Chem. Int. Ed., 2007, 46, 1222. https://doi.org/10.1002/anie.200602866
dc.relation.referencesen10. KassaeeM., Masrouri H., Movahedi F., Appl. Catal. A, 2011, 395, 28. https://doi.org/10.1016/j.apcata.2011.01.018
dc.relation.referencesen11. Esmaeilpour M., Sardarian A., Javidi J., Appl. Catal. A, 2012, 445-446, 359. https://doi.org/10.1016/j.apcata.2012.09.010
dc.relation.referencesen12. Maleki A., Tetrahedron Lett., 2013, 54, 2055. https://doi.org/10.1016/j.tetlet.2013.01.123
dc.relation.referencesen13. Kiasat A., Davarpanah J., J. Mol. Catal. A, 2013, 373, 46. https://doi.org/10.1016/j.molcata.2013.03.003
dc.relation.referencesen14. Zamani F., Izadi E., Catal. Commun., 2013, 42, 104. https://doi.org/10.1016/j.catcom.2013.08.006
dc.relation.referencesen15. GawandeM., Bonifácio V., Varma R. et al., Green Chem., 2013, 15, 1226. https://doi.org/10.1039/P.3gc40375k
dc.relation.referencesen16. Mahmoudi H., Jafari A., Chem. Cat. Chem., 2013, 5, 3743. https://doi.org/10.1002/cctc.201300623
dc.relation.referencesen17. Nemati F., Heravi M., Rad R., Chin. J. Catal., 2012, 33, 1825. https://doi.org/10.1016/S1872-2067(11)60455-5
dc.relation.referencesen18. Du Q., ZhangW., Ma H. et al., Tetrahedron, 2012, 68, 3577. https://doi.org/10.1016/j.tet.2012.03.008
dc.relation.referencesen19. Yang H., Li S., Wang X. et al., J. Mol. Catal. A, 2012, 363–364, 404. https://doi.org/10.1016/j.molcata.2012.07.017
dc.relation.referencesen20. Li W., Zhang B., Li X. et al., Appl. Catal. A, 2013, 459, 65. https://doi.org/10.1016/j.apcata.2013.04.010
dc.relation.referencesen21. Hu A., Yee G., Lin W., J. Am. Chem. Soc., 2005,127, 12486. https://doi.org/10.1021/ja053881o
dc.relation.referencesen22. Wang P., Kong A., WangW. et al., Catal. Lett., 2010, 135, 159. https://doi.org/10.1007/s10562-010-0271-x
dc.relation.referencesen23. GawandeM., Rathi A., Nogueira I. et al., Green Chem., 2013, 15, 1226. https://doi.org/10.1039/P.3gc40375k
dc.relation.referencesen24. Atashkar B., Rostami A., Tahmasbi B., Catal. Sci. Tech., 2013, 3, 2140. https://doi.org/10.1039/P.3cy00190c
dc.relation.referencesen25. Alizadeh A., Khodaei M., BeygzadehM. et al., Bull. Korean Chem. Soc., 2012, 33, 2546. https://doi.org/10.5012/bkcs.2012.33.8.2546
dc.relation.referencesen26. Cheng L., Li H., Sun J. et al., Bioorg. Med. Chem., 2010, 18, 4606. https://doi.org/10.1016/j.bmc.2010.05.034
dc.relation.referencesen27. Bhatt R., J. Global Pharma. Tech., 2010, 2, 110.
dc.relation.referencesen28. Kappe C., Shishkin O., Uraya G., Verdinoa P., Tetrahedron, 2000, 56, 1859. https://doi.org/10.1016/S0040-4020(00)00116-2
dc.relation.referencesen29. Amrutkar S., Bhagat U., Pargharmol P. et al., Int. Pharm. Pharm. Sci.ence 2010, 2, 84.
dc.relation.referencesen30. Atwal K., Swanson B., Unger S. et al., J. Med. Chem. 1991, 34, 2248. https://doi.org/10.1021/jm00106a048
dc.relation.referencesen31. Kudo N., Futura S., Chem. Pharma. Bull., 1999, 47, 857. https://doi.org/10.1248/cpb.47.857
dc.relation.referencesen32. Bonsei M., LoizzoM., Statti G. et al., Bioorg. Med. Chem. Lett., 2010, 20, 1990. https://doi.org/10.1016/j.bmcl.2010.01.113
dc.relation.referencesen33. Yar M., AbdullahM., Majeed J.:World Acad. Sci. Eng. Tech., 2006, 55, 593.
dc.relation.referencesen34. Siddiqui S., Azam A.:Med. Chem. Res., 2014, 23, 2976. https://doi.org/10.1007/s00044-013-0877-9
dc.relation.referencesen35. Kanagarajan V., Thanusu J., GopalakrishnaM., Eur. J. Med. Chem., 2010, 45, 1583. https://doi.org/10.1016/j.ejmech.2009.12.068
dc.relation.referencesen36. Thanh N., Mai N., Carbohyd. Res., 2009, 344, 2399. https://doi.org/10.1016/j.carres.2009.09.002
dc.relation.referencesen37. Bhat A., ArshadM., Lee E. et al., Chem. Biodiver., 2013, 10, 2267. https://doi.org/10.1002/cbdv.201300009
dc.relation.referencesen38. Hasan A., KhaleeqM., Raizi U., J. Org. Chem., 2010, 22, 5581.
dc.relation.referencesen39. Butta R., Donthamsetty S., Adivireddy P., Venkatapuram P., J. Heterocycl. Chem., 2017, 54, 524. https://doi.org/10.1002/jhet.2615
dc.relation.referencesen40. Kanagarajan V., How G. A., Siu C. N., GopalkrishnanM., J. Heterocycl. Chem., 2013, 50, 396. https://doi.org/10.1002/jhet.1046.
dc.relation.referencesen41. Singh J., Dulawat M., Jaitawat N. et al., Ind. J. Chem., 2012, 51B, 1623.
dc.relation.referencesen42. Varga L., Nagy T., Kovesdi I. et al., Tetrahedron, 2003, 59, 655. https://doi.org/10.1016/S0040-4020(02)01560-0
dc.relation.referencesen43. Ghoneim A., El-Farargy A., Org. Chem Curr. Res., 2016, 5, 1. https://doi.org/10.4172/2161-0401.1000159
dc.relation.referencesen44. Jetti S., Verma D., Jain S., ISRN Org. Chem., 2012. https://doi.org/10.5402/2012/480989
dc.relation.referencesen45. Fazaeli R., Aliyan H., Mallakpour S. et al., Chin. J. Catal., 2011, 32, 582. https://doi.org/10.1016/S1872-2067(10)60203-3
dc.relation.referencesen46. Fazaeli R., Aliyan H., Bordbar M., Mohammadi E., The Open Catal. J., 2010, 3, 79. https://doi.org/10.2174/1876214X01003010079
dc.relation.referencesen47. Aliyan H., Fazaeli R., Tajsaeed N., Iranian J. Catal. 2013, 3, 99.
dc.relation.referencesen48. Maleki B., Azarifar D., Moghaddam A. et al., J. Serb. Chem. Soc., 2009, 74, 1371. https://doi.org/10.2298/JSC0912371M
dc.relation.referencesen49. Pinto D., Silva A., Cavaleiro J., Elguero J., Eur. J. Org. Chem., 2003, 4, 747. https://doi.org/10.1002/ejoc.200390117
dc.relation.referencesen50. Kavitha N., Divekar K., Priyadarshani B., Gajanan S., Manjunath M., Der Pharma Chemica, 2011, 3, 55.
dc.citation.issue2
dc.citation.spage163
dc.citation.epage169
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2

Files in This Item:
File Description SizeFormat 
2019v13n2_Bansal_S-Hyperactive_Magnetically_163-169.pdf434.04 kBAdobe PDFView/Open
2019v13n2_Bansal_S-Hyperactive_Magnetically_163-169__COVER.png556.57 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.