https://oldena.lpnu.ua/handle/ntb/46428
Title: | The sulfonation of 3,5,7,3',4'-pentahydroxyflavone and non-linear-optical activity of its sulfonic derivatives |
Other Titles: | Сульфування 3,5,7,3',4'-пентагідроксифлавону та нелінійно оптичні властивості його сульфопохідних |
Authors: | Mishurov, Dmytro |
Affiliation: | National Technical University "Kharkiv Polytechnic Institute" |
Bibliographic description (Ukraine): | Mishurov D. The sulfonation of 3,5,7,3',4'-pentahydroxyflavone and non-linear-optical activity of its sulfonic derivatives / Dmytro Mishurov // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 33–37. |
Bibliographic description (International): | Mishurov D. The sulfonation of 3,5,7,3',4'-pentahydroxyflavone and non-linear-optical activity of its sulfonic derivatives / Dmytro Mishurov // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 33–37. |
Is part of: | Chemistry & Chemical Technology, 1 (13), 2019 |
Issue: | 1 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | кверцетин сульфування нелінійно-оптична активність поляризовність властивості quercetin sulfonation nonlinear activity polarizability property |
Number of pages: | 5 |
Page range: | 33-37 |
Start page: | 33 |
End page: | 37 |
Abstract: | Проведено синтез сульфокверцетину та
вивчення його структури й нелінійно оптичних властивостей.
Із використанням квантово-хімічних розрахунків, 13С і HSQC
ЯМР спектроскопії, ІЧ спектроскопії було показано, що
сульфонова група в знаходиться у положенні C8 кверцетину.
Визначено молекулярну гіперполяризованість отриманого
сульфокверцетину. Показано що сульфокверцетин можливо
використовувати для створення на його основі нових полі-
мерних НЛО матеріалів. Synthesis of sulfoquercetin and studies of its structure and nonlinear properties have been carried out. Using quantum-chemical simulations, 13С and HSQC NMR spectrometry, FTIR spectroscopy it was shown that a sulphonic group occurs in C8 location of quercetin. Molecular first hyperpolarizability of the obtained 8-sulfoquercetin was studied. It was shown that 8-sulfoquercetin can be used for creation the new polymer NLO materials on its basis. |
URI: | https://ena.lpnu.ua/handle/ntb/46428 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Mishurov D., 2019 |
URL for reference material: | https://doi.org/10.1039/C4RA13250E https://doi.org/10.3390/polym3030975 https://doi.org/10.1134/S0965545X12100045 https://doi.org/10.1039/C5CC03063C https://doi.org/10.1002/anie.198406901 https://doi.org/10.1021/j100179a026 https://doi.org/10.1021/ja00176a001 https://doi.org/10.1063/1.104625 https://doi.org/10.1063/1.350724 https://doi.org/10.1021/ja00020a030 https://dx.doi.org/10.1007/s00214-007-0401-8 https://doi.org/10.1063/1.444267 https://doi.org/10.1007/BF00533485 https://doi.org/10.1021/cr00031a013 https://doi.org/10.1063/1.474671 https://doi.org/10.15407/fm |
References (Ukraine): | 1. Liu J., Xu G., Liu F. et al.: RSC Adv., 2015, 5, 15784. https://doi.org/10.1039/C4RA13250E 2. Mishurov D., Roshal A., Brovko O.: Polym. Polym. Composites, 2015, 23, 121. 3. OhM.-C., Kim K.-J., Chu W.-S. et al.: Polymers, 2011, 3, 975. https://doi.org/10.3390/polym3030975 4. Shevchenko V., Sidorenko А., Bliznyuk V. et al.: Polym. Sci. Ser. A, 2013, 55, 1. https://doi.org/10.1134/S0965545X12100045 5. Greulich T., Suzuki N., Daniliuc C.: Chem. Commun., 2016, 11, 1. https://doi.org/10.1039/C5CC03063C 6. Williams D.: Angew. Chem. Int. Ed. Engl., 1984, 23, 690. https://doi.org/10.1002/anie.198406901 7. Cheng L.-T., TamW., Stevenson S. et al.: J. Phys. Chem., 1991, 95, 10631. https://doi.org/10.1021/j100179a026 8. Ulman A., Willand C., Kohler W. et al.: J. Am. Chem. Soc., 1990, 112, 7083. https://doi.org/10.1021/ja00176a001 9. Rikken G., Seppen C., Nijhuis S., Meijer E.: Appl. Phys. Lett., 1991, 58, 435. https://doi.org/10.1063/1.104625 10. Burland D., Miller R., Reiser O. et al.: J. Appl. Phys., 1992, 71, 410. https://doi.org/10.1063/1.350724 11. Stiegman A., Graham E., Perry K. et al.: J. Am. Chem. Soc., 1991, 113, 7658. https://doi.org/10.1021/ja00020a030 12. Labanowski J., Andzelm J. (Eds.): Density Functional Methods in Chemistry. Springer-Verlag, New York 1991. 13. Zhao Y., Truhlar D.: Theor. Chem. Account, 2008, 119, 525. https://dx.doi.org/10.1007/s00214-007-0401-8 14. Francl M., PietroW., Hehre W. et al.: J. Chem. Phys., 1982, 77, 3654. https://doi.org/10.1063/1.444267 15. Hariharan P., Pople J.: Theor. Chim. Acta, 1973, 28, 213. https://doi.org/10.1007/BF00533485 16. FrischM., Trucks G., Schlegel H. et al.: Gaussian 09, revision C.02; Gaussian, Inc.:Wallingford, CT. 2004 17. Tomasi J., PersicoM.: Chem. Rev., 1994, 94, 2027. https://doi.org/10.1021/cr00031a013 18. Barone V., Cossi M., Mennucci B., Tomasi J.: J. Chem. Phys., 1997, 107, 3210. https://doi.org/10.1063/1.474671 19. Mishurov D., Roshal A., Brovko O.: Funct. Mater., 2017, 24, 68. https://doi.org/10.15407/fm 24.01.068 20. Heneczkowski M., KopaczM., Nowak D., Kuźniar A.: Acta Polonise Pharmacuttica-Drug Resarch, 2001, 58, 415. |
References (International): | 1. Liu J., Xu G., Liu F. et al., RSC Adv., 2015, 5, 15784. https://doi.org/10.1039/P.4RA13250E 2. Mishurov D., Roshal A., Brovko O., Polym. Polym. Composites, 2015, 23, 121. 3. OhM.-C., Kim K.-J., Chu W.-S. et al., Polymers, 2011, 3, 975. https://doi.org/10.3390/polym3030975 4. Shevchenko V., Sidorenko A., Bliznyuk V. et al., Polym. Sci. Ser. A, 2013, 55, 1. https://doi.org/10.1134/S0965545X12100045 5. Greulich T., Suzuki N., Daniliuc C., Chem. Commun., 2016, 11, 1. https://doi.org/10.1039/P.5CC03063C 6. Williams D., Angew. Chem. Int. Ed. Engl., 1984, 23, 690. https://doi.org/10.1002/anie.198406901 7. Cheng L.-T., TamW., Stevenson S. et al., J. Phys. Chem., 1991, 95, 10631. https://doi.org/10.1021/j100179a026 8. Ulman A., Willand C., Kohler W. et al., J. Am. Chem. Soc., 1990, 112, 7083. https://doi.org/10.1021/ja00176a001 9. Rikken G., Seppen C., Nijhuis S., Meijer E., Appl. Phys. Lett., 1991, 58, 435. https://doi.org/10.1063/1.104625 10. Burland D., Miller R., Reiser O. et al., J. Appl. Phys., 1992, 71, 410. https://doi.org/10.1063/1.350724 11. Stiegman A., Graham E., Perry K. et al., J. Am. Chem. Soc., 1991, 113, 7658. https://doi.org/10.1021/ja00020a030 12. Labanowski J., Andzelm J. (Eds.): Density Functional Methods in Chemistry. Springer-Verlag, New York 1991. 13. Zhao Y., Truhlar D., Theor. Chem. Account, 2008, 119, 525. https://dx.doi.org/10.1007/s00214-007-0401-8 14. Francl M., PietroW., Hehre W. et al., J. Chem. Phys., 1982, 77, 3654. https://doi.org/10.1063/1.444267 15. Hariharan P., Pople J., Theor. Chim. Acta, 1973, 28, 213. https://doi.org/10.1007/BF00533485 16. FrischM., Trucks G., Schlegel H. et al., Gaussian 09, revision P.02; Gaussian, Inc.:Wallingford, CT. 2004 17. Tomasi J., PersicoM., Chem. Rev., 1994, 94, 2027. https://doi.org/10.1021/cr00031a013 18. Barone V., Cossi M., Mennucci B., Tomasi J., J. Chem. Phys., 1997, 107, 3210. https://doi.org/10.1063/1.474671 19. Mishurov D., Roshal A., Brovko O., Funct. Mater., 2017, 24, 68. https://doi.org/10.15407/fm 24.01.068 20. Heneczkowski M., KopaczM., Nowak D., Kuźniar A., Acta Polonise Pharmacuttica-Drug Resarch, 2001, 58, 415. |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n1_Mishurov_D-The_sulfonation_of_3_5_7_33-37.pdf | 326.19 kB | Adobe PDF | View/Open | |
2019v13n1_Mishurov_D-The_sulfonation_of_3_5_7_33-37__COVER.png | 483.04 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.