DC Field | Value | Language |
dc.contributor.author | Стасевич, М. В. | |
dc.contributor.author | Зварич, В. І. | |
dc.contributor.author | Новіков, В. П. | |
dc.contributor.author | Stasevych, M. V. | |
dc.contributor.author | Zvarych, V. I. | |
dc.contributor.author | Novikov, V. P. | |
dc.date.accessioned | 2020-03-02T09:14:36Z | - |
dc.date.available | 2020-03-02T09:14:36Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Стасевич М. В. Комп’ютерне прогнозування під час пошуку нових антитромбоцитарних агентів з антиоксидантним ефектом серед сульфуровмісних похідних 9,10-антрахінону / М. В. Стасевич, В. І. Зварич, В. П. Новіков // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 115–121. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46394 | - |
dc.description.abstract | Проведено комп’ютерне прогнозування щодо ймовірного прояву антитромбоцитарної
та антиоксидантної активностей для сульфуровмісних похідних 9,10-антрацендіону з
використанням онлайн-програми PASS Online платформи Way2Drug. Встановлено, що для
більшості сполук прогнозується антитромбоцитарна дія, яка доповнюється антиоксидантним ефектом. Здійснено молекулярне
моделювання взаємодії з рецепторами-мішенями, які беруть участь у регуляції агрегації тромбоцитів та білками-мішенями,
пов’язаними з процесом згортання крові. Визначено, що найвищий рівень зв’язування
виявлений до вітамін К-епоксидредуктази (VKOR), пов’язаної зі згортанням крові, а саме до
активної зони білка 3KP9. Показано, що сульфуропохідна 9,10-антацендіону 3 відзначається
значенням скорингової функції Gscore на рівні відомого препарату Варфарину, що може
свідчити про ймовірний механізм прояву антитромботичної дії. | |
dc.description.abstract | A computer-aided prediction of the probable presence of anti-platelet and antioxidant activities for sulfurcontaining
derivatives of 9,10-anthracenedione using the online program PASS Online of the Way2Drug platform
was carried out. It has been established that the antiplatelet effect is characteristic for the majority of compounds
and supplemented with the antioxidant action. Molecular modeling of interaction with target receptors that are
involved in the regulation of platelet aggregation and target proteins associated with the blood coagulation process
was performed. It was determined that a high level of affinity was found for the active zone of the protein 3KP9 of
vitamin K-epoxy-reductase (VKOR) associated with blood clotting. It was shown that the sulfur-containing
derivative 9,10-antacendione 3 shows the value of the scoring function of Gscore at the level of the well-known drug
Warfarin, which may indicate the likely mechanismof antithrombotic action. | |
dc.format.extent | 115-121 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (2), 2019 | |
dc.relation.uri | http://www.wjpr.net/dashboard/abstract_id/2069 | |
dc.relation.uri | http://www.chemaxon.com | |
dc.relation.uri | http://www.way2drug.com/PASSOnline/index.php | |
dc.relation.uri | http://www.ijkd.org/index.php/ijkd/article/view/178/122 | |
dc.subject | сульфуровмісні похідні 9 | |
dc.subject | 10-антрацендіону | |
dc.subject | in silico прогнозування | |
dc.subject | антитромбоцитарна активність | |
dc.subject | антиоксидантна активність | |
dc.subject | молекулярний докінг | |
dc.subject | sulfur-containing derivatives of 9 | |
dc.subject | 10-anthracenedione | |
dc.subject | in silico prediction | |
dc.subject | antiplatelet activity | |
dc.subject | antioxidant activity | |
dc.subject | molecular docking | |
dc.title | Комп’ютерне прогнозування під час пошуку нових антитромбоцитарних агентів з антиоксидантним ефектом серед сульфуровмісних похідних 9,10-антрахінону | |
dc.title.alternative | Computer-aided prediction in search of new antiplatelet agents with antioxidant effect among sulfur-containing derivatives of 9,10-anthraquinonone | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 7 | |
dc.identifier.citationen | Stasevych M. V. Computer-aided prediction in search of new antiplatelet agents with antioxidant effect among sulfur-containing derivatives of 9,10-anthraquinonone / M. V. Stasevych, V. I. Zvarych, V. P. Novikov // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 115–121. | |
dc.relation.references | 1. Gregson, J., Kaptoge, S., Bolton, T., Pennells, L., Willeit, P., Burgess, S., Meade, T. (2019). Cardiovascular Risk Factors Associated With Venous Thromboembolism. JAMA Cardiology, 4(2), 163–173. doi:10.1001/jamacardio.2018.4537 | |
dc.relation.references | 2. Jerjes-Sánchez, C. (2015). Mechanisms of Thrombosis. In: Jerjes-Sánchez, C. Thrombolysis in Pulmonary Embolism (pp. 1-17). Springer, Cham | |
dc.relation.references | 3. Shoichiro, D. (2019). Adverse Effect of Antithrombotic Medications on BleedingEvents and Comparison of Antithrombotic Agentsin Hemodialysis Patients. Therapeutic Apheresis and Dialysis, 23(1), 32-37. doi: 10.1111/1744-9987.12744 | |
dc.relation.references | 4. Kaur, A., Kaur, S., Kaur, M., Mahajan, A., & Bose, S. (2014). Rheum emodi: a review on pharmacology and phytochemistry. World Journal of Pharmaceutical Research, 4(1), 1892-1902. Retrieved from http://www.wjpr.net/dashboard/abstract_id/2069 | |
dc.relation.references | 5. Memariani, Z., Moeini, R., Hamedi, S.S., Narjes, G., & Mozaffarpur, S.A. (2018). Medicinal plants with antithrombotic property in Persian medicine: a mechanistic review. Journal of Thrombosis and Thrombolysis, 45(1), 158–179. doi: 10.1007/s11239-017-1580-3 | |
dc.relation.references | 6. Gouda, A. S., Amine, M. S., & Pedersen, E. B. (2016). Synthesis of New DNA G-Quadruplex Constructs with Anthraquinone Insertions and Their Anticoagulant Activity. Helvetica Chimica Acta, 99, 116-124. doi: 10.1002/hlca.201500207 | |
dc.relation.references | 7. Muralidharan-Chari, V., Kim, J., Abuawad, A., Naeem, M., Cui, H., & Mousa, S.A. (2016). Thymoquinone modulates blood coagulation in vitro via its effects on inflammatory and coagulation pathways. International Journal of Molecular Sciences, 17(4), Article number 474. doi: 10.3390/ijms17040474 | |
dc.relation.references | 8. Halenova, T., Nikolaeva, I., Nakonechna, A., & Lubenets, V. (2017). Inhibition of human platelet aggregation by some newly synthesized S-esters of thiosulfonic acid. Research and Practice in Thrombosis and Haemostasis, 1(1), 1276-1277. doi: 10.1002/rth2.12012 | |
dc.relation.references | 9. Chemaxon (2018). Retrieved from http://www.chemaxon.com | |
dc.relation.references | 10. PASS Online (2019). Retrieved from http://www.way2drug.com/PASSOnline/index.php | |
dc.relation.references | 11. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. Journal of Medicinal Chemistry, 49, 6177-6196. doi: 10.1021/jm051256o | |
dc.relation.references | 12. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. doi: 10.1093/nar/28.1.235 | |
dc.relation.references | 13. Zvarych, V., Stasevych, M., Lunin, V., Deniz, N. G., Sayil, C., Ozyurek, M., Guclu, K., Vovk, M., & Novikov V. (2016). Synthesis and investigation of antioxidant activity of the dithiocarbamates derivatives of 9,10-anthracenedione. Monatshefte für Chemie, 147(12), 2093-2101. doi: 10.1007/s00706-016-1839-y | |
dc.relation.references | 14. Zvarych, V. I., Stasevych, M. V., Lunin, V. V., Vovk, M. V., & Novikov V. P. (2016). Synthesis of 9,10- anthracenedione diethyldithiocarbamates. Russian Journal of General Chemistry, 86(12), 2699–2701. doi: 10.1134/S1070363216120227 | |
dc.relation.references | 15. Zvarych, V. I., Stasevych, M. V., Stanko, O. V., Komarovskaya-Porokhnyavets, E.Z., Poroikov, V. V., Rudik, A. V., … Novikov, V. P. (2014). Computerized prediction, synthesis, and antimicrobial activity of new amino-acid derivatives of 2-chloro-N-(9,10-dioxo-9,10- dihydroanthracen-1-yl)acetamide. Pharmaceutical Chemistry Journal, 48(9), 584-588. doi: 10.1007/s11094-014-1154-z | |
dc.relation.references | 16. Stasevych, M., Zvarych, V., Lunin, V., Deniz, N. G., Gokmen, Z., Akgun, O., … Novikov V. (2017). Computer-aided prediction and cytotoxicity evaluation of some dithiocarbamates of 9,10-anthracenedione as new anticancer agents // SAR and QSAR in Environmental Research, 28(5), 355-366. doi: 10.1080/1062936X.2017.1323796 | |
dc.relation.references | 17. Stasevych, M., Zvarych, V., Lunin, V., Vovk, M., & Novikov V. (2017). The new 1,2,3-triazolylantracene-9,10-diones: synthesis and computer bioactivity screening. Chemistry and Chemical technology, 11(1), 1-9. doi: 10.23939/chcht11.01.001 | |
dc.relation.references | 18. Zvarych, V., Stasevych, М., Stanko, О., Novikov, V., Vovk, М., Poroikov, V., & Solovyov, O. (2013). Computer prediction and synthesis of new azoles based on N-benzoyl-N'-(9,10-dioxo-9,10- dihydroanthacen-1-yl)thioureas. Cheminė Technologija, 61(2), 5–13. doi: 10.5755/j01.ct.64.2.6018 | |
dc.relation.references | 19. Shi, X., Ding, M., Dong, Z., Chen, F., Ye, J., Wang, S. …Vallyathan V. (1999). Antioxidant properties of aspirin: Characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-κB activation, and TNF-α production. Molecular and Cellular Biochemistry, 199(1), 93-102. doi: 10.1023/A:100693461 | |
dc.relation.references | 20. Xu, Y., Wang, S., Miao, Q., Jin, K., Lou, L., Ye, X., Xi, Y., & Ye, J. (2017). Protective Role of Hinokitiol Against H2O2-Induced Injury in Human Corneal Epithelium. Current Eye Research, 42(1), 47-53. doi: 10.3109/02713683.2016.1151530 | |
dc.relation.references | 21. Taher, M. A. & Nassir, E. S. (2011). Beneficial effects of clopidogrel on glycemic indices and oxidative stress in patients with type 2 diabetes. Saudi Pharmaceutical Journal, 19(2), 107-113. doi: 10.1016/j.jsps.2011.01.006 | |
dc.relation.references | 22. Nassiri, A. A., Hakemi, M. S., Soulati, M., Marashian, M., Rahbar, K., & Azizi, F. (2009). Effects of heparin and dalteparin on oxidative stress during hemodialysis in patients with end-stage renal disease. Iranian journal of kidney diseases, 3(3), 162-167. Retrieved from http://www.ijkd.org/index.php/ijkd/article/view/178/122 | |
dc.relation.references | 23. Cases, A., Vera, M., Palomo, M., Torramade S., Escolar G., & Diaz-Ricart, M. (2017). TO021 direct factor Xa inhibitor apixaban prevents endothelial activation and damage associated with chronic kidney disease. Nephrology Dialysis Transplantation, 32(3), iii87. doi: 10.1093/ndt/gfx131 | |
dc.relation.references | 24. Winship, I., Ross, G., Nicoll, A., Hogan, C., Leong, Y., & Varigos, G. (2009). Antioxidant effect of warfarin therapy: a possible symptomatic treatment for erythropoietic protoporphyria. Archives of Dermatology, 145(8), 960-961. doi: 10.1001/archdermatol.2009.165. | |
dc.relation.referencesen | 1. Gregson, J., Kaptoge, S., Bolton, T., Pennells, L., Willeit, P., Burgess, S., Meade, T. (2019). Cardiovascular Risk Factors Associated With Venous Thromboembolism. JAMA Cardiology, 4(2), 163–173. doi:10.1001/jamacardio.2018.4537 | |
dc.relation.referencesen | 2. Jerjes-Sánchez, C. (2015). Mechanisms of Thrombosis. In: Jerjes-Sánchez, C. Thrombolysis in Pulmonary Embolism (pp. 1-17). Springer, Cham | |
dc.relation.referencesen | 3. Shoichiro, D. (2019). Adverse Effect of Antithrombotic Medications on BleedingEvents and Comparison of Antithrombotic Agentsin Hemodialysis Patients. Therapeutic Apheresis and Dialysis, 23(1), 32-37. doi: 10.1111/1744-9987.12744 | |
dc.relation.referencesen | 4. Kaur, A., Kaur, S., Kaur, M., Mahajan, A., & Bose, S. (2014). Rheum emodi: a review on pharmacology and phytochemistry. World Journal of Pharmaceutical Research, 4(1), 1892-1902. Retrieved from http://www.wjpr.net/dashboard/abstract_id/2069 | |
dc.relation.referencesen | 5. Memariani, Z., Moeini, R., Hamedi, S.S., Narjes, G., & Mozaffarpur, S.A. (2018). Medicinal plants with antithrombotic property in Persian medicine: a mechanistic review. Journal of Thrombosis and Thrombolysis, 45(1), 158–179. doi: 10.1007/s11239-017-1580-3 | |
dc.relation.referencesen | 6. Gouda, A. S., Amine, M. S., & Pedersen, E. B. (2016). Synthesis of New DNA G-Quadruplex Constructs with Anthraquinone Insertions and Their Anticoagulant Activity. Helvetica Chimica Acta, 99, 116-124. doi: 10.1002/hlca.201500207 | |
dc.relation.referencesen | 7. Muralidharan-Chari, V., Kim, J., Abuawad, A., Naeem, M., Cui, H., & Mousa, S.A. (2016). Thymoquinone modulates blood coagulation in vitro via its effects on inflammatory and coagulation pathways. International Journal of Molecular Sciences, 17(4), Article number 474. doi: 10.3390/ijms17040474 | |
dc.relation.referencesen | 8. Halenova, T., Nikolaeva, I., Nakonechna, A., & Lubenets, V. (2017). Inhibition of human platelet aggregation by some newly synthesized S-esters of thiosulfonic acid. Research and Practice in Thrombosis and Haemostasis, 1(1), 1276-1277. doi: 10.1002/rth2.12012 | |
dc.relation.referencesen | 9. Chemaxon (2018). Retrieved from http://www.chemaxon.com | |
dc.relation.referencesen | 10. PASS Online (2019). Retrieved from http://www.way2drug.com/PASSOnline/index.php | |
dc.relation.referencesen | 11. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. Journal of Medicinal Chemistry, 49, 6177-6196. doi: 10.1021/jm051256o | |
dc.relation.referencesen | 12. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. doi: 10.1093/nar/28.1.235 | |
dc.relation.referencesen | 13. Zvarych, V., Stasevych, M., Lunin, V., Deniz, N. G., Sayil, C., Ozyurek, M., Guclu, K., Vovk, M., & Novikov V. (2016). Synthesis and investigation of antioxidant activity of the dithiocarbamates derivatives of 9,10-anthracenedione. Monatshefte für Chemie, 147(12), 2093-2101. doi: 10.1007/s00706-016-1839-y | |
dc.relation.referencesen | 14. Zvarych, V. I., Stasevych, M. V., Lunin, V. V., Vovk, M. V., & Novikov V. P. (2016). Synthesis of 9,10- anthracenedione diethyldithiocarbamates. Russian Journal of General Chemistry, 86(12), 2699–2701. doi: 10.1134/S1070363216120227 | |
dc.relation.referencesen | 15. Zvarych, V. I., Stasevych, M. V., Stanko, O. V., Komarovskaya-Porokhnyavets, E.Z., Poroikov, V. V., Rudik, A. V., … Novikov, V. P. (2014). Computerized prediction, synthesis, and antimicrobial activity of new amino-acid derivatives of 2-chloro-N-(9,10-dioxo-9,10- dihydroanthracen-1-yl)acetamide. Pharmaceutical Chemistry Journal, 48(9), 584-588. doi: 10.1007/s11094-014-1154-z | |
dc.relation.referencesen | 16. Stasevych, M., Zvarych, V., Lunin, V., Deniz, N. G., Gokmen, Z., Akgun, O., … Novikov V. (2017). Computer-aided prediction and cytotoxicity evaluation of some dithiocarbamates of 9,10-anthracenedione as new anticancer agents, SAR and QSAR in Environmental Research, 28(5), 355-366. doi: 10.1080/1062936X.2017.1323796 | |
dc.relation.referencesen | 17. Stasevych, M., Zvarych, V., Lunin, V., Vovk, M., & Novikov V. (2017). The new 1,2,3-triazolylantracene-9,10-diones: synthesis and computer bioactivity screening. Chemistry and Chemical technology, 11(1), 1-9. doi: 10.23939/chcht11.01.001 | |
dc.relation.referencesen | 18. Zvarych, V., Stasevych, M., Stanko, O., Novikov, V., Vovk, M., Poroikov, V., & Solovyov, O. (2013). Computer prediction and synthesis of new azoles based on N-benzoyl-N'-(9,10-dioxo-9,10- dihydroanthacen-1-yl)thioureas. Cheminė Technologija, 61(2), 5–13. doi: 10.5755/j01.ct.64.2.6018 | |
dc.relation.referencesen | 19. Shi, X., Ding, M., Dong, Z., Chen, F., Ye, J., Wang, S. …Vallyathan V. (1999). Antioxidant properties of aspirin: Characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-kB activation, and TNF-α production. Molecular and Cellular Biochemistry, 199(1), 93-102. doi: 10.1023/A:100693461 | |
dc.relation.referencesen | 20. Xu, Y., Wang, S., Miao, Q., Jin, K., Lou, L., Ye, X., Xi, Y., & Ye, J. (2017). Protective Role of Hinokitiol Against H2O2-Induced Injury in Human Corneal Epithelium. Current Eye Research, 42(1), 47-53. doi: 10.3109/02713683.2016.1151530 | |
dc.relation.referencesen | 21. Taher, M. A. & Nassir, E. S. (2011). Beneficial effects of clopidogrel on glycemic indices and oxidative stress in patients with type 2 diabetes. Saudi Pharmaceutical Journal, 19(2), 107-113. doi: 10.1016/j.jsps.2011.01.006 | |
dc.relation.referencesen | 22. Nassiri, A. A., Hakemi, M. S., Soulati, M., Marashian, M., Rahbar, K., & Azizi, F. (2009). Effects of heparin and dalteparin on oxidative stress during hemodialysis in patients with end-stage renal disease. Iranian journal of kidney diseases, 3(3), 162-167. Retrieved from http://www.ijkd.org/index.php/ijkd/article/view/178/122 | |
dc.relation.referencesen | 23. Cases, A., Vera, M., Palomo, M., Torramade S., Escolar G., & Diaz-Ricart, M. (2017). TO021 direct factor Xa inhibitor apixaban prevents endothelial activation and damage associated with chronic kidney disease. Nephrology Dialysis Transplantation, 32(3), iii87. doi: 10.1093/ndt/gfx131 | |
dc.relation.referencesen | 24. Winship, I., Ross, G., Nicoll, A., Hogan, C., Leong, Y., & Varigos, G. (2009). Antioxidant effect of warfarin therapy: a possible symptomatic treatment for erythropoietic protoporphyria. Archives of Dermatology, 145(8), 960-961. doi: 10.1001/archdermatol.2009.165. | |
dc.citation.issue | 2 | |
dc.citation.spage | 115 | |
dc.citation.epage | 121 | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 2
|