DC Field | Value | Language |
dc.contributor.author | Поліш, Н. В. | |
dc.contributor.author | Марінцова, Н. Г. | |
dc.contributor.author | Журахівська, Л. Р. | |
dc.contributor.author | Новіков, В. П. | |
dc.contributor.author | Вовк, М. В. | |
dc.contributor.author | Polish, N. V. | |
dc.contributor.author | Marintsova, N. G. | |
dc.contributor.author | Zhurakhivska, L. R. | |
dc.contributor.author | Novikov, V. P. | |
dc.contributor.author | Vovk, M. V. | |
dc.date.accessioned | 2020-02-28T13:09:25Z | - |
dc.date.available | 2020-02-28T13:09:25Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Синтез та прогнозування біологічної активності нових гетероциклічних n-похідних нафтохінону / Н. В. Поліш, Н. Г. Марінцова, Л. Р. Журахівська, В. П. Новіков, М. В. Вовк // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 69–75. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46359 | - |
dc.description.abstract | З метою пошуку нових перспективних субстанцій із широким спектром біологічної
активності було синтезовано гетероциклічні N-похідні 1,4-дихлоронафтохінону і визначено їх
лікоподібні (“drug-like”) характеристики. Запропоновано зручні та ефективні методики синтезу
нових амінопіразол похідних на основі дихлорнафтохінону. Здійснено фізико-хімічне дослідження
та попереднє комп’ютерне прогнозування біологічної активності продуктів. Підтверджено будову
одержаних нових гетероциклічних сполук та визначено їхні характеристики із використанням
елементного аналізу, ІЧ- та ПМР-спектроскопії. | |
dc.description.abstract | In order to find new promising substances with a wide spectrum of biological activity,
heterocyclic N-derivatives of 1,4-dichloronaphthoquinone were synthesized. Convenient and effective
methods of synthesis of new aminopyrazole derivatives based on dichloronaphthoquinone are proposed.
The physical-chemical research and the previous computer forecasting of the biological activity of
products are carried out. The structure of the obtained new heterocyclic compounds was confirmed and
their characteristics are presented using elemental analysis, IR and NMR spectroscopy. | |
dc.format.extent | 69-75 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (2), 2019 | |
dc.subject | 1 | |
dc.subject | 4-нафтохінон | |
dc.subject | аміни | |
dc.subject | піразол | |
dc.subject | реакція нуклеофільного заміщення | |
dc.subject | лікоподібні характеристики | |
dc.subject | параметри Ліпінського | |
dc.subject | PASS Online | |
dc.subject | 1 | |
dc.subject | 4-naphthoquinone | |
dc.subject | amines | |
dc.subject | pirazole | |
dc.subject | nucleophilic substitution reaction | |
dc.subject | drug-like parameters | |
dc.subject | Lipinski's parameters | |
dc.subject | PASS Online | |
dc.title | Синтез та прогнозування біологічної активності нових гетероциклічних n-похідних нафтохінону | |
dc.title.alternative | Synthesis and prediction of the biological activity of heterocyclic n-derivatives naphthoquinone | |
dc.type | Article | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Інститут органічної хімії НАН України | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute of Organic Chemistry NAS of Ukraine | |
dc.format.pages | 7 | |
dc.identifier.citationen | Synthesis and prediction of the biological activity of heterocyclic n-derivatives naphthoquinone / N. V. Polish, N. G. Marintsova, L. R. Zhurakhivska, V. P. Novikov, M. V. Vovk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 69–75. | |
dc.relation.references | 1. Phillips, R. M., Jaffar, M., Maitland, D. J., Loadman, P. M., Shnyder, S. D., Steans, G., & Stratford, I. J. (2004). Pharmacological and biological evaluation of a series of substituted 1, 4-naphthoquinone bioreductive drugs. Biochemical pharmacology, 68(11), 2107–2116. | |
dc.relation.references | 2. Tandon, V. K., Singh, R. V., & Yadav, D. B. (2004). Synthesis and evaluation of novel 1, 4- naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorganic & medicinal chemistry letters, 14(11), 2901–2904. | |
dc.relation.references | 3. Hassan, A. A., Mohamed, N. K., Ibrahim, Y. R., & Mourad, A. F. E. (1993). Chemical Interactions between Aminopyrazoles and 2, 3. Dicyano-1, 4-naphthoquinone. Liebigs Annalen der Chemie, 1993(6), 695–697. | |
dc.relation.references | 4. Ibis, C., Tuyun, A. F., Bahar, H., Ayla, S. S., Stasevych, M. V., Musyanovych, R. Y., & Novikov, V. (2014). Nucleophilic substitution reactions of 1, 4- naphthoquinone and biologic properties of novel S-, S, S-, N-, and N, S-substituted 1, 4-naphthoquinone derivatives. Medicinal Chemistry Research, 23(4), 2140–2149. | |
dc.relation.references | 5. Al-Adiwish, W. M., Tahir, M. I. M., Siti- Noor-Adnalizawati, A., Hashim, S. F., Ibrahim, N., & Yaacob, W. A. (2013). Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo [1, 5-a] pyrimidine and pyrazolo [5, 1-c][1, 2, 4] triazine derivatives from new 5-aminopyrazoles. European journal of medicinal chemistry, 64, 464–476. | |
dc.relation.references | 6. Nitulescu, G., Draghici, C., & Olaru, O. (2013). New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. International journal of molecular sciences, 14(11), 21805–21818. | |
dc.relation.references | 7. Heravi, M. M., & Talaei, B. (2015). Ketenes as privileged synthons in the syntheses of heterocyclic compounds Part 2: Five-membered heterocycles. In Advances in heterocyclic chemistry (Vol. 114, pp. 147-225). Academic Press. | |
dc.relation.references | 8. qfb, s. d. n. f. (2014). naphthoquinones: biological properties and synthesis of lawsone and derivatives-a structured review/naftoquinonas: propiedades biológicas y síntesis de lawsona y derivados-una revisión estructurada. Vitae, 21(3), 248. | |
dc.relation.references | 9. Wellington, K. W. (2015). Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5(26), 20309-20338. | |
dc.relation.references | 10. El-Najjar, N., Gali-Muhtasib, H., Ketola, R. A., Vuorela, P., Urtti, A., & Vuorela, H. (2011). The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochemistry Reviews, 10(3), 353. | |
dc.relation.references | 11. Liu, F. (2012). Synthesis of natural products and small molecules using quinones. | |
dc.relation.references | 12. Ansari, A., Ali, A., & Asif, M. (2017). biologically active pyrazole derivatives. New Journal of Chemistry, 41(1), 16-41. | |
dc.relation.references | 13. Li, Y. R., Li, C., Liu, J. C., Guo, M., Zhang, T. Y., Sun, L. P., & Piao, H. R. (2015). Synthesis and biological evaluation of 1, 3-diaryl pyrazole derivatives as potential antibacterial and antiinflammatory agents. Bioorganic & medicinal chemistry letters, 25(22), 5052–5057. | |
dc.relation.references | 14. Filimonov, D. A., Druzhilovskiy, D. S., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Dmitriev, A. V., & Poroikov, V. V. (2018). Computeraided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biomedical Chemistry: Research and Methods, 1(1), e00004-e00004. | |
dc.relation.references | 15. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64, 4–17. | |
dc.relation.referencesen | 1. Phillips, R. M., Jaffar, M., Maitland, D. J., Loadman, P. M., Shnyder, S. D., Steans, G., & Stratford, I. J. (2004). Pharmacological and biological evaluation of a series of substituted 1, 4-naphthoquinone bioreductive drugs. Biochemical pharmacology, 68(11), 2107–2116. | |
dc.relation.referencesen | 2. Tandon, V. K., Singh, R. V., & Yadav, D. B. (2004). Synthesis and evaluation of novel 1, 4- naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorganic & medicinal chemistry letters, 14(11), 2901–2904. | |
dc.relation.referencesen | 3. Hassan, A. A., Mohamed, N. K., Ibrahim, Y. R., & Mourad, A. F. E. (1993). Chemical Interactions between Aminopyrazoles and 2, 3. Dicyano-1, 4-naphthoquinone. Liebigs Annalen der Chemie, 1993(6), 695–697. | |
dc.relation.referencesen | 4. Ibis, C., Tuyun, A. F., Bahar, H., Ayla, S. S., Stasevych, M. V., Musyanovych, R. Y., & Novikov, V. (2014). Nucleophilic substitution reactions of 1, 4- naphthoquinone and biologic properties of novel S-, S, S-, N-, and N, S-substituted 1, 4-naphthoquinone derivatives. Medicinal Chemistry Research, 23(4), 2140–2149. | |
dc.relation.referencesen | 5. Al-Adiwish, W. M., Tahir, M. I. M., Siti- Noor-Adnalizawati, A., Hashim, S. F., Ibrahim, N., & Yaacob, W. A. (2013). Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo [1, 5-a] pyrimidine and pyrazolo [5, 1-c][1, 2, 4] triazine derivatives from new 5-aminopyrazoles. European journal of medicinal chemistry, 64, 464–476. | |
dc.relation.referencesen | 6. Nitulescu, G., Draghici, C., & Olaru, O. (2013). New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. International journal of molecular sciences, 14(11), 21805–21818. | |
dc.relation.referencesen | 7. Heravi, M. M., & Talaei, B. (2015). Ketenes as privileged synthons in the syntheses of heterocyclic compounds Part 2: Five-membered heterocycles. In Advances in heterocyclic chemistry (Vol. 114, pp. 147-225). Academic Press. | |
dc.relation.referencesen | 8. qfb, s. d. n. f. (2014). naphthoquinones: biological properties and synthesis of lawsone and derivatives-a structured review/naftoquinonas: propiedades biológicas y síntesis de lawsona y derivados-una revisión estructurada. Vitae, 21(3), 248. | |
dc.relation.referencesen | 9. Wellington, K. W. (2015). Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5(26), 20309-20338. | |
dc.relation.referencesen | 10. El-Najjar, N., Gali-Muhtasib, H., Ketola, R. A., Vuorela, P., Urtti, A., & Vuorela, H. (2011). The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochemistry Reviews, 10(3), 353. | |
dc.relation.referencesen | 11. Liu, F. (2012). Synthesis of natural products and small molecules using quinones. | |
dc.relation.referencesen | 12. Ansari, A., Ali, A., & Asif, M. (2017). biologically active pyrazole derivatives. New Journal of Chemistry, 41(1), 16-41. | |
dc.relation.referencesen | 13. Li, Y. R., Li, C., Liu, J. C., Guo, M., Zhang, T. Y., Sun, L. P., & Piao, H. R. (2015). Synthesis and biological evaluation of 1, 3-diaryl pyrazole derivatives as potential antibacterial and antiinflammatory agents. Bioorganic & medicinal chemistry letters, 25(22), 5052–5057. | |
dc.relation.referencesen | 14. Filimonov, D. A., Druzhilovskiy, D. S., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Dmitriev, A. V., & Poroikov, V. V. (2018). Computeraided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biomedical Chemistry: Research and Methods, 1(1), e00004-e00004. | |
dc.relation.referencesen | 15. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64, 4–17. | |
dc.citation.issue | 1 | |
dc.citation.spage | 69 | |
dc.citation.epage | 75 | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 1
|