DC Field | Value | Language |
dc.contributor.author | Wcisło, G. | |
dc.contributor.author | Kurczyński, D. | |
dc.contributor.author | Łagowski, P. | |
dc.contributor.author | Pracuch, B. | |
dc.contributor.author | Leśniak, A. | |
dc.contributor.author | Tomyuk, V. | |
dc.date.accessioned | 2020-02-28T08:48:50Z | - |
dc.date.available | 2020-02-28T08:48:50Z | - |
dc.date.created | 2018-06-26 | |
dc.date.issued | 2018-06-26 | |
dc.identifier.citation | Influence of Perkins 1104D-44TA motor powered with SME supply on the CO, NOx, THC and O2 emissions / G. Wcisło, D. Kurczyński, P. Łagowski, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 49–52. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46292 | - |
dc.description.abstract | The paper presents the results of research on the
impact of Perkins 1104D-44TA engine powered with sunflower
oil methyl esters and, for comparison, with diesel fuel, in terms
of emission of CO, THC, NOx and O2. The tests were carried
out on the engine test stand. During the tests, the engine worked
according to the external speed characteristics in the range from
1000 to 2200 rpm. The esters used for powering the tested
engine were produced using the GW 200 reactor designed and
made by Grzegorz Wcisło, one of the co-authors of the paper.
The results of the tests carried out showed a decrease in the
concentration of carbon monoxide in the exhaust gases,
hydrocarbons when powering the engine with sunflower oil
esters in relation to powering the engine with diesel fuel. At the
same time, the concentration of nitrogen oxides and oxygen in
the exhaust gases increased. The reduction of THC and CO
emissions is the result of better combustion and afterburning of
fuel. However, the increase in the amount of oxygen in the
exhaust gases results from the fact that in the biofuel structure
there is oxygen which is used in combustion and reduces the
oxygen demand from the atmosphere. On the other hand, the
increase in NOx emissions is the result of a higher combustion
temperature than when the engine is powered by diesel fuel. | |
dc.format.extent | 49-52 | |
dc.language.iso | en | |
dc.publisher | Lublin | |
dc.relation.ispartof | Econtechmod : scientific journal, 4 (7), 2018 | |
dc.subject | combustion engine | |
dc.subject | biofuels | |
dc.subject | methyl esters of sunflower oil SME | |
dc.subject | external speed characteristics | |
dc.title | Influence of Perkins 1104D-44TA motor powered with SME supply on the CO, NOx, THC and O2 emissions | |
dc.type | Article | |
dc.rights.holder | © Copyright by Lviv Polytechnic National University 2018 | |
dc.rights.holder | © Copyright by Polish Academy of Sciences 2018 | |
dc.rights.holder | © Copyright by University of Engineering and Economics in Rzeszów 2018 | |
dc.rights.holder | © Copyright by University of Life Sciences in Lublin 2018 | |
dc.contributor.affiliation | University of Agriculture in Krakow | |
dc.contributor.affiliation | Malopolskie Centre for Renewable Energy Sources "BioEnergia” | |
dc.contributor.affiliation | Kielce University of Technology | |
dc.contributor.affiliation | Lviv National Agrarian University | |
dc.format.pages | 4 | |
dc.identifier.citationen | Influence of Perkins 1104D-44TA motor powered with SME supply on the CO, NOx, THC and O2 emissions / G. Wcisło, D. Kurczyński, P. Łagowski, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 49–52. | |
dc.relation.references | 1. Adewale P., Dumont M.-J., Ngadi M. 2015. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45, pp. 574–588. | |
dc.relation.references | 2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154. | |
dc.relation.references | 3. Ambrozik A., Kurczyński D., Łagowski P., Warianek M. 2016. The toxicity of combustion gas from the Fiat 1.3 Multijet engine operating following the load characteristics and fed with rape oil esters. Proceedings of The Institute of Vehicles 1(105), pp. 23–35. | |
dc.relation.references | 4. Banković-Ilić I. B., Stojković I. J., Stamenković O. S., Veljkovic V. B., Hung Yung-Tse. 2014. Waste animal fats as feedstocks for biodiesel production. Renewable and SustainableEnergyReviews 32, pp. 238–254. | |
dc.relation.references | 5. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013: Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105, pp. 228–234. | |
dc.relation.references | 6. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. | |
dc.relation.references | 7. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 , pp. 10907–10914. | |
dc.relation.references | 8. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, pp. 446–471. | |
dc.relation.references | 9. Jazair W., Kubo S., Takayasu M., Yatsufusa T., Kidoguchi Y. 2011. Performance and emission characteristicsof a dieseln engine fueled by rapeseed oil bio-fuel. Journal Mek., 33/2011, 32-–39. | |
dc.relation.references | 10. Karabektas M., Ergen G., Hosoz M. 2013. Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine. Fuel, 112, 537–541. | |
dc.relation.references | 11. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z. 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89, pp. 3442–3449. | |
dc.relation.references | 12. Millo F., Debnath B.K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627. | |
dc.relation.references | 13. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego C. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238. | |
dc.relation.references | 14. System do pomiaru spalin silnikowych MEXA1600D/DEGR. Instrukcja obsługi. | |
dc.relation.references | 15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków. | |
dc.relation.references | 16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114. | |
dc.relation.references | 17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4, pp. 338–344. | |
dc.relation.references | 18. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, pp. 56–67. | |
dc.relation.references | 19. Wcisło. G. 2010: Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, pp. 509–516. | |
dc.relation.references | 20. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G.. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod. Vol. 5, no. 3, pp. 41–50. | |
dc.relation.referencesen | 1. Adewale P., Dumont M.-J., Ngadi M. 2015. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45, pp. 574–588. | |
dc.relation.referencesen | 2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154. | |
dc.relation.referencesen | 3. Ambrozik A., Kurczyński D., Łagowski P., Warianek M. 2016. The toxicity of combustion gas from the Fiat 1.3 Multijet engine operating following the load characteristics and fed with rape oil esters. Proceedings of The Institute of Vehicles 1(105), pp. 23–35. | |
dc.relation.referencesen | 4. Banković-Ilić I. B., Stojković I. J., Stamenković O. S., Veljkovic V. B., Hung Yung-Tse. 2014. Waste animal fats as feedstocks for biodiesel production. Renewable and SustainableEnergyReviews 32, pp. 238–254. | |
dc.relation.referencesen | 5. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013: Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105, pp. 228–234. | |
dc.relation.referencesen | 6. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. | |
dc.relation.referencesen | 7. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 , pp. 10907–10914. | |
dc.relation.referencesen | 8. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, pp. 446–471. | |
dc.relation.referencesen | 9. Jazair W., Kubo S., Takayasu M., Yatsufusa T., Kidoguchi Y. 2011. Performance and emission characteristicsof a dieseln engine fueled by rapeseed oil bio-fuel. Journal Mek., 33/2011, 32-–39. | |
dc.relation.referencesen | 10. Karabektas M., Ergen G., Hosoz M. 2013. Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine. Fuel, 112, 537–541. | |
dc.relation.referencesen | 11. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z. 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89, pp. 3442–3449. | |
dc.relation.referencesen | 12. Millo F., Debnath B.K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627. | |
dc.relation.referencesen | 13. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego P. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238. | |
dc.relation.referencesen | 14. System do pomiaru spalin silnikowych MEXA1600D/DEGR. Instrukcja obsługi. | |
dc.relation.referencesen | 15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków. | |
dc.relation.referencesen | 16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114. | |
dc.relation.referencesen | 17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4, pp. 338–344. | |
dc.relation.referencesen | 18. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, pp. 56–67. | |
dc.relation.referencesen | 19. Wcisło. G. 2010: Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, pp. 509–516. | |
dc.relation.referencesen | 20. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G.. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod. Vol. 5, no. 3, pp. 41–50. | |
dc.citation.volume | 7 | |
dc.citation.issue | 4 | |
dc.citation.spage | 49 | |
dc.citation.epage | 52 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Econtechmod. – 2018. – Vol. 7, No. 4
|