Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46292
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWcisło, G.
dc.contributor.authorKurczyński, D.
dc.contributor.authorŁagowski, P.
dc.contributor.authorPracuch, B.
dc.contributor.authorLeśniak, A.
dc.contributor.authorTomyuk, V.
dc.date.accessioned2020-02-28T08:48:50Z-
dc.date.available2020-02-28T08:48:50Z-
dc.date.created2018-06-26
dc.date.issued2018-06-26
dc.identifier.citationInfluence of Perkins 1104D-44TA motor powered with SME supply on the CO, NOx, THC and O2 emissions / G. Wcisło, D. Kurczyński, P. Łagowski, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 49–52.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46292-
dc.description.abstractThe paper presents the results of research on the impact of Perkins 1104D-44TA engine powered with sunflower oil methyl esters and, for comparison, with diesel fuel, in terms of emission of CO, THC, NOx and O2. The tests were carried out on the engine test stand. During the tests, the engine worked according to the external speed characteristics in the range from 1000 to 2200 rpm. The esters used for powering the tested engine were produced using the GW 200 reactor designed and made by Grzegorz Wcisło, one of the co-authors of the paper. The results of the tests carried out showed a decrease in the concentration of carbon monoxide in the exhaust gases, hydrocarbons when powering the engine with sunflower oil esters in relation to powering the engine with diesel fuel. At the same time, the concentration of nitrogen oxides and oxygen in the exhaust gases increased. The reduction of THC and CO emissions is the result of better combustion and afterburning of fuel. However, the increase in the amount of oxygen in the exhaust gases results from the fact that in the biofuel structure there is oxygen which is used in combustion and reduces the oxygen demand from the atmosphere. On the other hand, the increase in NOx emissions is the result of a higher combustion temperature than when the engine is powered by diesel fuel.
dc.format.extent49-52
dc.language.isoen
dc.publisherLublin
dc.relation.ispartofEcontechmod : scientific journal, 4 (7), 2018
dc.subjectcombustion engine
dc.subjectbiofuels
dc.subjectmethyl esters of sunflower oil SME
dc.subjectexternal speed characteristics
dc.titleInfluence of Perkins 1104D-44TA motor powered with SME supply on the CO, NOx, THC and O2 emissions
dc.typeArticle
dc.rights.holder© Copyright by Lviv Polytechnic National University 2018
dc.rights.holder© Copyright by Polish Academy of Sciences 2018
dc.rights.holder© Copyright by University of Engineering and Economics in Rzeszów 2018
dc.rights.holder© Copyright by University of Life Sciences in Lublin 2018
dc.contributor.affiliationUniversity of Agriculture in Krakow
dc.contributor.affiliationMalopolskie Centre for Renewable Energy Sources "BioEnergia”
dc.contributor.affiliationKielce University of Technology
dc.contributor.affiliationLviv National Agrarian University
dc.format.pages4
dc.identifier.citationenInfluence of Perkins 1104D-44TA motor powered with SME supply on the CO, NOx, THC and O2 emissions / G. Wcisło, D. Kurczyński, P. Łagowski, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 49–52.
dc.relation.references1. Adewale P., Dumont M.-J., Ngadi M. 2015. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45, pp. 574–588.
dc.relation.references2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154.
dc.relation.references3. Ambrozik A., Kurczyński D., Łagowski P., Warianek M. 2016. The toxicity of combustion gas from the Fiat 1.3 Multijet engine operating following the load characteristics and fed with rape oil esters. Proceedings of The Institute of Vehicles 1(105), pp. 23–35.
dc.relation.references4. Banković-Ilić I. B., Stojković I. J., Stamenković O. S., Veljkovic V. B., Hung Yung-Tse. 2014. Waste animal fats as feedstocks for biodiesel production. Renewable and SustainableEnergyReviews 32, pp. 238–254.
dc.relation.references5. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013: Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105, pp. 228–234.
dc.relation.references6. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market.
dc.relation.references7. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 , pp. 10907–10914.
dc.relation.references8. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, pp. 446–471.
dc.relation.references9. Jazair W., Kubo S., Takayasu M., Yatsufusa T., Kidoguchi Y. 2011. Performance and emission characteristicsof a dieseln engine fueled by rapeseed oil bio-fuel. Journal Mek., 33/2011, 32-–39.
dc.relation.references10. Karabektas M., Ergen G., Hosoz M. 2013. Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine. Fuel, 112, 537–541.
dc.relation.references11. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z. 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89, pp. 3442–3449.
dc.relation.references12. Millo F., Debnath B.K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627.
dc.relation.references13. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego C. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238.
dc.relation.references14. System do pomiaru spalin silnikowych MEXA1600D/DEGR. Instrukcja obsługi.
dc.relation.references15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków.
dc.relation.references16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114.
dc.relation.references17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4, pp. 338–344.
dc.relation.references18. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, pp. 56–67.
dc.relation.references19. Wcisło. G. 2010: Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, pp. 509–516.
dc.relation.references20. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G.. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod. Vol. 5, no. 3, pp. 41–50.
dc.relation.referencesen1. Adewale P., Dumont M.-J., Ngadi M. 2015. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45, pp. 574–588.
dc.relation.referencesen2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154.
dc.relation.referencesen3. Ambrozik A., Kurczyński D., Łagowski P., Warianek M. 2016. The toxicity of combustion gas from the Fiat 1.3 Multijet engine operating following the load characteristics and fed with rape oil esters. Proceedings of The Institute of Vehicles 1(105), pp. 23–35.
dc.relation.referencesen4. Banković-Ilić I. B., Stojković I. J., Stamenković O. S., Veljkovic V. B., Hung Yung-Tse. 2014. Waste animal fats as feedstocks for biodiesel production. Renewable and SustainableEnergyReviews 32, pp. 238–254.
dc.relation.referencesen5. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013: Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105, pp. 228–234.
dc.relation.referencesen6. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market.
dc.relation.referencesen7. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 , pp. 10907–10914.
dc.relation.referencesen8. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, pp. 446–471.
dc.relation.referencesen9. Jazair W., Kubo S., Takayasu M., Yatsufusa T., Kidoguchi Y. 2011. Performance and emission characteristicsof a dieseln engine fueled by rapeseed oil bio-fuel. Journal Mek., 33/2011, 32-–39.
dc.relation.referencesen10. Karabektas M., Ergen G., Hosoz M. 2013. Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine. Fuel, 112, 537–541.
dc.relation.referencesen11. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z. 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89, pp. 3442–3449.
dc.relation.referencesen12. Millo F., Debnath B.K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627.
dc.relation.referencesen13. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego P. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238.
dc.relation.referencesen14. System do pomiaru spalin silnikowych MEXA1600D/DEGR. Instrukcja obsługi.
dc.relation.referencesen15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków.
dc.relation.referencesen16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114.
dc.relation.referencesen17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4, pp. 338–344.
dc.relation.referencesen18. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, pp. 56–67.
dc.relation.referencesen19. Wcisło. G. 2010: Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, pp. 509–516.
dc.relation.referencesen20. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G.. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod. Vol. 5, no. 3, pp. 41–50.
dc.citation.volume7
dc.citation.issue4
dc.citation.spage49
dc.citation.epage52
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Econtechmod. – 2018. – Vol. 7, No. 4

Files in This Item:
File Description SizeFormat 
2018v7n4_Wcislo_G-Influence_of_Perkins_1104D_49-52.pdf406.72 kBAdobe PDFView/Open
2018v7n4_Wcislo_G-Influence_of_Perkins_1104D_49-52__COVER.png483.5 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.