DC Field | Value | Language |
dc.contributor.author | Łagowski, P. | |
dc.contributor.author | Kurczyński, D. | |
dc.contributor.author | Wcisło, G. | |
dc.contributor.author | Pracuch, B. | |
dc.contributor.author | Leśniak, A. | |
dc.contributor.author | Tomyuk, V. | |
dc.date.accessioned | 2020-02-28T08:48:50Z | - |
dc.date.available | 2020-02-28T08:48:50Z | - |
dc.date.created | 2018-06-26 | |
dc.date.issued | 2018-06-26 | |
dc.identifier.citation | Influence of the SME run Perkins 1104D-44TA engine on the power and torque as well as unitary and hourly fuel consumption / P. Łagowski, D. Kurczyński, G. Wcisło, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 45–48. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46291 | - |
dc.description.abstract | he article presents the results of tests
determining the impact of using sunflower oil methyl esters on
power and torque as well as unitary and hourly fuel
consumption of the Perkins 1104D-44TA engine. Biofuels were
produced in the Fuel and Energy Laboratory belonging to the
Maopolskie Centrum Energii Odnawialnej (Małopolskie Center
for Renewable Energy Sources), while analyzes of the selected
fuel parameters were performed both in the above-mentioned
laboratory and in the Liquid Biofuels Laboratory at the
University of Agriculture in Krakow. Engine tests were carried
out on the engine test stand at the Kielce University of
Technology. During the tests, the engine worked according to
the external speed characteristic. The results of the tests have
shown that the engine supplied with the SME achieves slightly
lower values of both power and torque than in the case of
commercial fuel oil type Ekodiesel Ultra from the ORLEN S.A
company. There was also an increase, especially in the case of
higher unitary fuel consumption. Hourly fuel consumption was
higher when supplied with SME in relation to the diesel fuel
supply, although not as much as unitary consumption. The
increase in SME consumption at the engine supply can be
explained by the lower fuel value of SME, which contains oxygen in its structure. | |
dc.format.extent | 45-48 | |
dc.language.iso | en | |
dc.publisher | Lublin | |
dc.relation.ispartof | Econtechmod : scientific journal, 4 (7), 2018 | |
dc.subject | combustion engine | |
dc.subject | biofuels | |
dc.subject | methyl esters of sunflower oil | |
dc.subject | external speed characteristics | |
dc.title | Influence of the SME run Perkins 1104D-44TA engine on the power and torque as well as unitary and hourly fuel consumption | |
dc.type | Article | |
dc.rights.holder | © Copyright by Lviv Polytechnic National University 2018 | |
dc.rights.holder | © Copyright by Polish Academy of Sciences 2018 | |
dc.rights.holder | © Copyright by University of Engineering and Economics in Rzeszów 2018 | |
dc.rights.holder | © Copyright by University of Life Sciences in Lublin 2018 | |
dc.contributor.affiliation | Kielce University of Technology | |
dc.contributor.affiliation | University of Agriculture in Krakow | |
dc.contributor.affiliation | Malopolskie Centre for Renewable Energy Sources “BioEnergia” | |
dc.contributor.affiliation | Cracow University of Economics | |
dc.contributor.affiliation | Lviv National Agrarian University | |
dc.format.pages | 4 | |
dc.identifier.citationen | Influence of the SME run Perkins 1104D-44TA engine on the power and torque as well as unitary and hourly fuel consumption / P. Łagowski, D. Kurczyński, G. Wcisło, B. Pracuch, A. Leśniak, V. Tomyuk // Econtechmod : scientific journal. — Lviv : Lublin, 2018. — Vol 7. — No 4. — P. 45–48. | |
dc.relation.references | 1. Adewale P., Dumont M.-J., Ngadi M. 2014. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45(2015), p. 574–588. | |
dc.relation.references | 2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154. | |
dc.relation.references | 3. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013. Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105 (2013), p. 228–234. | |
dc.relation.references | 4. Demirbas A. 2009. Characterization of Biodiesel Fuels. Energy Sources, Part A, 31:889÷896. | |
dc.relation.references | 5. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. | |
dc.relation.references | 6. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 (2011), p. 10907–10914. | |
dc.relation.references | 7. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, p. 446–471. | |
dc.relation.references | 8. Kirubakaran M., Arul Mozhi Selvan V. 2018. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 82 (2018) p. 390–401. | |
dc.relation.references | 9. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z., 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89/2010, s. 3442–3449. | |
dc.relation.references | 10. Millo F., Debnath B. K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627. | |
dc.relation.references | 11. Murugesan A., Umarani C., Subramanian R., Nedunchezhian N. 2009. Bio-diesel as an alternative fuel for diesel engines—A review. Renewable and Sustainable Energy Reviews, vol. 13/2009, p. 653÷662. | |
dc.relation.references | 12. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego C. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238. | |
dc.relation.references | 13. Stamenković O. S. Veličković A. V., Veljković V. B. 2011. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel 90 (2011), p. 3141–3155. Produkcja biodiesla z olejów roślinnych przez etanolizę: stan obecny i perspektywy. | |
dc.relation.references | 14. Vertes A. A., Qureshi N., Blaschek H. P., Yukawa H. 2010. Biomass to Biofuels: Strategies for Global Industries. WILEY, A John Wiley & Sons, Ltd Publication. | |
dc.relation.references | 15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków. | |
dc.relation.references | 16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114. | |
dc.relation.references | 17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4/2009, s. 338–344. | |
dc.relation.references | 18. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. Vol. 5, no. 3, 41–50. | |
dc.relation.references | 19. Wcisło. G. 2010:Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, P. 509–516. 2010. | |
dc.relation.references | 20. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, P. 56–67. | |
dc.relation.referencesen | 1. Adewale P., Dumont M.-J., Ngadi M. 2014. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews 45(2015), p. 574–588. | |
dc.relation.referencesen | 2. Alptekin E., Canakci M., Sanli H. 2014. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Management 34, p. 2146–2154. | |
dc.relation.referencesen | 3. Cunha A. Jr., Feddern V., De Prá M. C., Higarashi M. M., G. de Abreu P., Coldebella A. 2013. Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 105 (2013), p. 228–234. | |
dc.relation.referencesen | 4. Demirbas A. 2009. Characterization of Biodiesel Fuels. Energy Sources, Part A, 31:889÷896. | |
dc.relation.referencesen | 5. Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. | |
dc.relation.referencesen | 6. Encinar J.M., Sánchez N., Martínez G., García L. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 (2011), p. 10907–10914. | |
dc.relation.referencesen | 7. Issariyakul T., Dalai A. K. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31, p. 446–471. | |
dc.relation.referencesen | 8. Kirubakaran M., Arul Mozhi Selvan V. 2018. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 82 (2018) p. 390–401. | |
dc.relation.referencesen | 9. Kousoulidou M., Fontaras G., Ntziachristos L., Samaras Z., 2010. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89/2010, s. 3442–3449. | |
dc.relation.referencesen | 10. Millo F., Debnath B. K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. 2015. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel, vol. 159, p. 614–627. | |
dc.relation.referencesen | 11. Murugesan A., Umarani C., Subramanian R., Nedunchezhian N. 2009. Bio-diesel as an alternative fuel for diesel engines-A review. Renewable and Sustainable Energy Reviews, vol. 13/2009, p. 653÷662. | |
dc.relation.referencesen | 12. Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego P. 2015. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, p. 230–238. | |
dc.relation.referencesen | 13. Stamenković O. S. Veličković A. V., Veljković V. B. 2011. The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel 90 (2011), p. 3141–3155. Produkcja biodiesla z olejów roślinnych przez etanolizę: stan obecny i perspektywy. | |
dc.relation.referencesen | 14. Vertes A. A., Qureshi N., Blaschek H. P., Yukawa H. 2010. Biomass to Biofuels: Strategies for Global Industries. WILEY, A John Wiley & Sons, Ltd Publication. | |
dc.relation.referencesen | 15. Wcisło G. 2013. Analiza wpływu odmian rzepaku na własności biopaliw RME oraz parametry pracy silnika o zapłonie samoczynnym. Monografia habilitacyjna. Wydawnictwo FALL. Kraków. | |
dc.relation.referencesen | 16. Wcisło G., Labak N. 2017. Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1. p. 111–114. | |
dc.relation.referencesen | 17. Żmudzińska-Żurek B., Kożuch B., Rakoczy J. 2009. Badanie reakcji transestryfikacji triglicerydów oleju rzepakowego bioetanolem. Nafta-Gaz, 4/2009, s. 338–344. | |
dc.relation.referencesen | 18. Drygaś B., Depciuch J., Puchalski Cz., Zaguła G. 2016. The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies. Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. Vol. 5, no. 3, 41–50. | |
dc.relation.referencesen | 19. Wcisło. G. 2010:Utilization of used oils and fat for manufacturing FAME biofuels. Teka Komisji Motoryzacji I Energetyki Rolnictwa, 2010, Vol. X, P. 509–516. 2010. | |
dc.relation.referencesen | 20. Tziourtzioumis D., Stamatelos A. 2012. Effects f a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine. Energy Conversion and Management 60/2012, P. 56–67. | |
dc.citation.volume | 7 | |
dc.citation.issue | 4 | |
dc.citation.spage | 45 | |
dc.citation.epage | 48 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Econtechmod. – 2018. – Vol. 7, No. 4
|