Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46150
Title: The shell model of electron structure of negative hydrogen ion
Other Titles: Оболонкова модель електронної структури негативного іона водню
Authors: Ваврух, М.
Дзіковський, Д.
Стельмах, О.
Vavrukh, M.
Dzikovskyi, D.
Stelmakh, O.
Affiliation: Львівський національний університет імені Івана Франка
Ivan Franko National University of Lviv
Bibliographic description (Ukraine): Vavrukh M. The shell model of electron structure of negative hydrogen ion / M. Vavrukh, D. Dzikovskyi, O. Stelmakh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 144–151.
Bibliographic description (International): Vavrukh M. The shell model of electron structure of negative hydrogen ion / M. Vavrukh, D. Dzikovskyi, O. Stelmakh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 144–151.
Is part of: Mathematical Modeling and Computing, 1 (6), 2019
Issue: 1
Issue Date: 26-Feb-2019
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 523.9
523.9-7
523.9-47
Keywords: негативний іон водню
базисний підхід
варіаційний підхід
енергія іонізації
negative hydrogen ion
reference system approach
variation method
energy of ionization
Number of pages: 8
Page range: 144-151
Start page: 144
End page: 151
Abstract: У межах нерелятивістського наближення одержано компактний наближений розв’язок рівняння Шредингера для іона H− у вигляді розкладу за поліномами Лежандра і варіаційними функціями типу Шулля–Льовдіна. Точність розрахунку енергії іона відповідає результатам, одержаним за допомогою багатопараметричних функцій Гіллєраса і Пекеріса.
In the frame of non-relativistic approximation, a compact approximate solution of the Schr¨odinger equation for the ion of H− has been obtained in the form of product for Legendre polynomials and variational functions of the Schull–L¨owdin type. The accuracy of calculation of ion energy is of the same order that the results obtained using the multiparametric functions of Hylleraas and Pekeris.
URI: https://ena.lpnu.ua/handle/ntb/46150
Copyright owner: CMM IAPMM NAS
© 2019 Lviv Polytechnic National University
References (Ukraine): 1. WildtR. The Continuous Spectrum of Stellar Atmospheres Consisting Only of Atoms and Negative Ions of Hydrogen. Astrophys. Journ. 93, 47–51 (1941).
2. Chandrasekhar S., Breen F.H. On the Continuous Absorption Coefficient of the Negative Hydrogen Ion. III. Astrophys. Journ. 104, 430–445 (1946).
3. Geltman S. The Bound-Free Absorption Coefficient of the Hydrogen Negative Ion. Astrophys. Journ. 136, 935–945 (1962).
4. WishartA.W. The Bound-Free Photodetachment Cross Section of H−. J. Phys. B: Atom. Molec. Phys. 12 (21), 3511–3519, (1979).
5. VavrukhМ.V., Vasil’eva I.Е., StelmakhО.М., TyshkoN. L. Continuous Absorption and Depression in the Solar Spectrum at Wavelengths from 650 to 820 nm. Kinematics and Physics of Celestial Bodies. 32 (3), 129–144 (2016).
6. Hylleraas E.A. Die Elektronenaffinit¨at des Wasserstoffatoms nach der Wellenmechanik. Zeitschrift f¨ur Physik. 60, 624–630 (1930).
7. PekerisC. L. 11S, 21S and 23S States of H− and of He. Phys. Rev. 126, 1470–1476 (1962).
8. MasseyH. S.W. Negative Ions. Cambridge University Press (1976).
9. SchullH., L¨owdinP.-O. Correlation Splitting in Helium-Like Ions. J. Chem. Phys. 25, 1035–1040 (1956).
10. KinoshitaT. Ground State of the Helium Atom. Phys. Rev. 105, 1490–1502 (1957).
11. Hart J. F., HerzbergG. Twenty-Parameter Eigenfunctions and Energy Values of the Ground States of He and He-Like Ions. Phys. Rev. 106, 79–82 (1957).
12. TweedR. J. Correlated wavefunctions for helium-like atomic systems. J. Phys. B: Atom. Molec. Phys. 5, 810–819 (1972).
References (International): 1. WildtR. The Continuous Spectrum of Stellar Atmospheres Consisting Only of Atoms and Negative Ions of Hydrogen. Astrophys. Journ. 93, 47–51 (1941).
2. Chandrasekhar S., Breen F.H. On the Continuous Absorption Coefficient of the Negative Hydrogen Ion. III. Astrophys. Journ. 104, 430–445 (1946).
3. Geltman S. The Bound-Free Absorption Coefficient of the Hydrogen Negative Ion. Astrophys. Journ. 136, 935–945 (1962).
4. WishartA.W. The Bound-Free Photodetachment Cross Section of H−. J. Phys. B: Atom. Molec. Phys. 12 (21), 3511–3519, (1979).
5. VavrukhM.V., Vasil’eva I.E., StelmakhO.M., TyshkoN. L. Continuous Absorption and Depression in the Solar Spectrum at Wavelengths from 650 to 820 nm. Kinematics and Physics of Celestial Bodies. 32 (3), 129–144 (2016).
6. Hylleraas E.A. Die Elektronenaffinit¨at des Wasserstoffatoms nach der Wellenmechanik. Zeitschrift f¨ur Physik. 60, 624–630 (1930).
7. PekerisC. L. 11S, 21S and 23S States of H− and of He. Phys. Rev. 126, 1470–1476 (1962).
8. MasseyH. S.W. Negative Ions. Cambridge University Press (1976).
9. SchullH., L¨owdinP.-O. Correlation Splitting in Helium-Like Ions. J. Chem. Phys. 25, 1035–1040 (1956).
10. KinoshitaT. Ground State of the Helium Atom. Phys. Rev. 105, 1490–1502 (1957).
11. Hart J. F., HerzbergG. Twenty-Parameter Eigenfunctions and Energy Values of the Ground States of He and He-Like Ions. Phys. Rev. 106, 79–82 (1957).
12. TweedR. J. Correlated wavefunctions for helium-like atomic systems. J. Phys. B: Atom. Molec. Phys. 5, 810–819 (1972).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2019. – Vol. 6, No. 1

Files in This Item:
File Description SizeFormat 
2019v6n1_Vavrukh_M-The_shell_model_of_electron_144-151.pdf928.54 kBAdobe PDFView/Open
2019v6n1_Vavrukh_M-The_shell_model_of_electron_144-151__COVER.png375.88 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.