Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46139
Title: Resonant modes of the motion of a cylindrical reservoir on a movable pendulum suspension with a free-surface liquid
Other Titles: Резонансні режими руху циліндричного резервуару на рухомому маятниковому підвісі з рідиною з вільною поверхнею
Authors: Лимарченко, О.
Нефьодов, О.
Limarchenko, O.
Nefedov, A.
Affiliation: Київський національний університет імені Тараса Шевченка
Taras Shevchenko Kyiv National University
Bibliographic description (Ukraine): Limarchenko O. Resonant modes of the motion of a cylindrical reservoir on a movable pendulum suspension with a free-surface liquid / O. Limarchenko, A. Nefedov // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 178–183.
Bibliographic description (International): Limarchenko O. Resonant modes of the motion of a cylindrical reservoir on a movable pendulum suspension with a free-surface liquid / O. Limarchenko, A. Nefedov // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 178–183.
Is part of: Mathematical Modeling and Computing, 2 (5), 2018
Issue: 2
Issue Date: 26-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 532.595
Keywords: коливання рідини
резервуар на маятниковому підвісі
білярезонансні режими руху
амплітудна модуляція
liquid oscillations
reservoir on pendulum suspension
near-resonant modes of motion
amplitude modulation
Number of pages: 6
Page range: 178-183
Start page: 178
End page: 183
Abstract: Досліджено систему “резервуар – рідина з вільною поверхнею”, коли резервуар знаходиться на маятниковому підвісі з точкою підвісу, що виконує заданий рух. Вивчено поведінку системи для дорезонансного, білярезонансного і зарезонансного режимів. Описано поведінку системи на основі нелінійної моделі руху, згідно з якою приймається до уваги сумісний характер руху компонент системи. Чисельне моделювання показало, що загальні закономірності поведінки системи якісно узгоджуються з відомими експериментами.
The article deals with an investigation of the system of “reservoir – liquid with a free surface”, when the reservoir is fixed on pendulum suspension, which suspension point performs a given motion. The system behavior is studied for the below-resonant, nearresonant and above-resonant modes. The description of the system behavior is done based on a nonlinear model of motion, which takes into account the combined character of motion of the system components. The numerical modeling shows that general regularities of the system behavior coincide qualitatively with known experiments.
URI: https://ena.lpnu.ua/handle/ntb/46139
Copyright owner: CMM IAPMM NASU
© 2018 Lviv Polytechnic National University
References (Ukraine): 1. Limarchenko O. S., Yasinskiy V. V. Nonlinear dynamics of structures with liquid. National Technical University of Ukraine “KPI” (1997), (in Russian).
2. Faltinsen O. M., Rognebakke O. M., Timokha A. N. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1–42 (2003).
3. Ibrahim R. A. Liquid sloshing dynamics: theory and applications. Cambridge University Press (2005).
4. Lukovskiy I. A. Introduction to nonlinear dynamics of a rigid body with cavities containing liquid. Naukova dumka, Kiev (1990), (in Russian).
5. Faltinsen O. M., Rognebakke O. M., Timokha A. N. Transient and steady-state amplitudes of resonant threedimensional sloshing in a square base tank with a finite fluid depth. Physics of fluids. 18 (1), 012103 (2006).
6. Mikishev G. N., Rabinovich B. I. Dynamics of rigid bodies with cavities partially filled by liquid. Mashinostroenie, Moscow (1968), (in Russian).
7. Pal P. Sloshing of liquid in partially filled container – an experimental study. International Journal of Recent Trends in Engineering. 1 (6), 1–5 (2009).
8. Zhang Ch., Li Y., Meng Q. Fully nonlinear analysis of second order sloshing resonance in a three-dimensional tank. Computers & Fluids. 116, 88–104 (2015).
9. Limarchenko O. S., Gubskaya V. V. Problem of forced nonlinear oscillations of the reservoir of truncated conic shape, partially filled with liquid. Bulletin of Kiev National University. 1 (4), 73–76 (2012).
10. Lymarchenko O. S., Semenovych K. O. Energy redistribution between the reservoir and liquid with free surface for angular motions of the system. Journal of Mathematical Sciences. 222 (3), 296–303 (2017).
References (International): 1. Limarchenko O. S., Yasinskiy V. V. Nonlinear dynamics of structures with liquid. National Technical University of Ukraine "KPI" (1997), (in Russian).
2. Faltinsen O. M., Rognebakke O. M., Timokha A. N. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1–42 (2003).
3. Ibrahim R. A. Liquid sloshing dynamics: theory and applications. Cambridge University Press (2005).
4. Lukovskiy I. A. Introduction to nonlinear dynamics of a rigid body with cavities containing liquid. Naukova dumka, Kiev (1990), (in Russian).
5. Faltinsen O. M., Rognebakke O. M., Timokha A. N. Transient and steady-state amplitudes of resonant threedimensional sloshing in a square base tank with a finite fluid depth. Physics of fluids. 18 (1), 012103 (2006).
6. Mikishev G. N., Rabinovich B. I. Dynamics of rigid bodies with cavities partially filled by liquid. Mashinostroenie, Moscow (1968), (in Russian).
7. Pal P. Sloshing of liquid in partially filled container – an experimental study. International Journal of Recent Trends in Engineering. 1 (6), 1–5 (2009).
8. Zhang Ch., Li Y., Meng Q. Fully nonlinear analysis of second order sloshing resonance in a three-dimensional tank. Computers & Fluids. 116, 88–104 (2015).
9. Limarchenko O. S., Gubskaya V. V. Problem of forced nonlinear oscillations of the reservoir of truncated conic shape, partially filled with liquid. Bulletin of Kiev National University. 1 (4), 73–76 (2012).
10. Lymarchenko O. S., Semenovych K. O. Energy redistribution between the reservoir and liquid with free surface for angular motions of the system. Journal of Mathematical Sciences. 222 (3), 296–303 (2017).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
2018v5n2_Limarchenko_O-Resonant_modes_of_the_178-183.pdf847.02 kBAdobe PDFView/Open
2018v5n2_Limarchenko_O-Resonant_modes_of_the_178-183__COVER.png403.18 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.