Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorЛабай, В.
dc.contributor.authorДовбуш, О.
dc.contributor.authorЯрослав, В.
dc.contributor.authorКлименко, Г.
dc.contributor.authorLabay, V.
dc.contributor.authorDovbush, O.
dc.contributor.authorYaroslav, V.
dc.contributor.authorKlymenko, H.
dc.date.accessioned2020-02-27T08:51:50Z-
dc.date.available2020-02-27T08:51:50Z-
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.identifier.citationMathematical modeling of a split-conditioner operation for evaluation of exergy efficiency of the R600A refrigerant application / V. Labay, O. Dovbush, V. Yaroslav, H. Klymenko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 169–177.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46138-
dc.description.abstractУ сучасних технологіях, пов’язаних з перетворенням енергії, а саме в split-кондиціонерах, важливе місце займають апарати та процеси. Об’єктивно оцінити ступінь їх енергетичної досконалості можна лише на основі аналізу їх ексергетичної ефективності. Це дозволило обґрунтувати актуальність дослідницького завдання, що пов’язано із недостатньою інформацією щодо ефективності використання різних холодоагентів у спліт-кондиціонерах. Розроблено авторську інноваційну математичну модель для аналізу роботи одноступеневих фреонових холодильних машин, які використовують у split-кондиціонерах, за ексергетичним методом. На цій моделі отримано ексергетичний коефіцієнт корисної дії (ККД) та втрати ексергії в окремих елементах split-кондиціонера на прикладі кондиціонера з номінальною холодопродуктивністю 2800 Вт фірми “Daikin” за стандартних зовнішніх температурних умов на холодоагентах R410A, R32 і запропонованого авторами для використання у splitкондиціонерах холодоагента R600A. Виявлено, що за ексергетичним ККД холодильний агент R600A є найефективнішим. Використання холодоагента R600A порiвняно з R410A і R32 показало збільшення ексергетичної ефективності split-кондиціонера на 12.4% і 8.7%, відповідно. Втрати ексергії, виявлені в усіх елементах холодильної машини split-кондиціонера, вказують на необхідність удосконалення обладнання split-кондиціонера, щоб зменшити втрати ексергії в них та загалом збільшити його ексергетичний ККД.
dc.description.abstractIn the modern technologies related to energy transformation, namely in split-conditioners, an important place is occupied by apparatuses and processes, which energy perfection can be objectively evaluated only on the basis of analysis of their exergy efficiency. This allowed substantiating the actuality of the research task due to insufficient information on the effectiveness of the use of various refrigerants in split-conditioners. The author’s innovation mathematical model for analysis of the work of one-step freon refrigerating machines, which are used in air split-conditioners, according to the exergetic method, is developed. The obtained exergetic output-input ratio (OIR) and losses of exergy in the separate elements on the example of air split-conditioner with nominal cooling capacity of 2800 W of “Daikin” firm in the standard external temperature conditions on the refrigerants R410A, R32 and proposed by the authors for the use in split-conditioners R600A refrigerant are obtained on this model. It was established that by the exergy efficiency, the R600A refrigerant is the most effective. The use of the R600A refrigerant when compared to R410A and R32 has shown the increase of the exergetic efficiency of the split-conditioner in 12.4% and 8.7%, respectively. The losses of exergy having been established in all elements of refrigerating machine of the air split-conditioner indicate that the air split-conditioner parts should be improved to reduce the losses of exergy in them and to increase its exergetic OIR in general.
dc.format.extent169-177
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (5), 2018
dc.subjectsplit-кондиціонер
dc.subjectексергетичний баланс
dc.subjectексергетичний ККД
dc.subjectвтрати ексергії
dc.subjectхолодоагент
dc.subjectair split-conditioner
dc.subjectexergetic balance
dc.subjectexergetic output-input ratio (OIR)
dc.subjectlosses of exergy
dc.subjectrefrigerant
dc.titleMathematical modeling of a split-conditioner operation for evaluation of exergy efficiency of the R600A refrigerant application
dc.title.alternativeМатематичне моделювання роботи спліт-кондиціонера для дослідження ексергетичної ефективності застосування холодоагента R600A
dc.typeArticle
dc.rights.holderCMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages9
dc.identifier.citationenMathematical modeling of a split-conditioner operation for evaluation of exergy efficiency of the R600A refrigerant application / V. Labay, O. Dovbush, V. Yaroslav, H. Klymenko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 169–177.
dc.relation.references1. Szargut J., Petela R. Exergy. Moscow, Energy (1968), (in Russian).
dc.relation.references2. Sokolov E. Y., Brodyansky V. M. Energy Basis of Transformation of Heat and Cooling Processes. Moscow, Energoizdat (1981), (in Russian).
dc.relation.references3. de Oliveira Junior S. Exergy. – Production, Cost and Renewability. London, Springer-Verlag (2013).
dc.relation.references4. Sazhin B. S., Bulekov B. S., Sazhin B. S. Exergy Analysis of Work of Industrial Plants): Monograph. Moscow (2000), (in Russian).
dc.relation.references5. Bejan A. Advanced Engineering Thermodynamics. New York, John Wiley & Sons (1988).
dc.relation.references6. Bejan A., Tsatsaronis G., Moran M. Thermal Design and Optimization. New York, J.Wiley (1996).
dc.relation.references7. Morosuk T., Nikulshin R., Morosuk L. Entropy-Cycle Method for Analysis of Refrigeration Machine and Heat Pump Cycles. Thermal science. 10 (1), 111–124 (2006).
dc.relation.references8. Morozyuk T. V. Theory of Refrigeration Machines and Heat Pumps. Odessa, Studio “Negotsiant” (2006), (in Russian).
dc.relation.references9. Morozyuk L. I., Morozyuk T. V., Gaiduk S. V. Thermodynamic Analysis of Waste Heat Recovery Refrigeration Machine with Carbon Dioxide. Eastern-European Journal of Enterprise Technologies. 2/8 (68), 36–44 (2014), (in Russian).
dc.relation.references10. Tsatsaronis J. The Interaction of Thermodynamics and Economy to Minimize Cost of Energy Conversion Systems. Odessa, Studio “Negotsiant” (2002), (in Russian).
dc.relation.references11. Labay V. Yo., Khanyk Ya. M. Used in Air Split-conditioners Refrigerants R407C and R410A. Scientific and Technical Journal “Refrigeration Engineering and Technology”. 3 (113), 13–17 (2008), (in Ukrainian).
dc.relation.references12. Labay V. Yo., Khanyk Ya. M. Energy Saving Ratio Between the Air Flows at the Evaporator and Condenser Air Split-conditioners. Scientific and Technical Journal “Refrigeration Engineering and Technology”. 6 (116), 28–31 (2008), (in Ukrainian).
dc.relation.references13. Labay V. Yo., Mysak Yo. S. Adduction of Work of Refrigeration’s Machines of Air Split-conditioners to the Identical Internal Temperature Condition. Scientific and Technical Journal “Refrigeration Engineering and Technology”. 4 (126), 19–22 (2010), (in Ukrainian).
dc.relation.references14. Jakobsen A., Rassmussen B.-D., Skovrup M.-J., Andersen S.-E. CoolPack — a collection of simulation tools for refrigeration systemes. Tutorial, Version 1.46. Department of Energy Engineering Technical University of Denmark (2001).
dc.relation.references15. Daikin Catalog Split (2017).
dc.relation.referencesen1. Szargut J., Petela R. Exergy. Moscow, Energy (1968), (in Russian).
dc.relation.referencesen2. Sokolov E. Y., Brodyansky V. M. Energy Basis of Transformation of Heat and Cooling Processes. Moscow, Energoizdat (1981), (in Russian).
dc.relation.referencesen3. de Oliveira Junior S. Exergy, Production, Cost and Renewability. London, Springer-Verlag (2013).
dc.relation.referencesen4. Sazhin B. S., Bulekov B. S., Sazhin B. S. Exergy Analysis of Work of Industrial Plants): Monograph. Moscow (2000), (in Russian).
dc.relation.referencesen5. Bejan A. Advanced Engineering Thermodynamics. New York, John Wiley & Sons (1988).
dc.relation.referencesen6. Bejan A., Tsatsaronis G., Moran M. Thermal Design and Optimization. New York, J.Wiley (1996).
dc.relation.referencesen7. Morosuk T., Nikulshin R., Morosuk L. Entropy-Cycle Method for Analysis of Refrigeration Machine and Heat Pump Cycles. Thermal science. 10 (1), 111–124 (2006).
dc.relation.referencesen8. Morozyuk T. V. Theory of Refrigeration Machines and Heat Pumps. Odessa, Studio "Negotsiant" (2006), (in Russian).
dc.relation.referencesen9. Morozyuk L. I., Morozyuk T. V., Gaiduk S. V. Thermodynamic Analysis of Waste Heat Recovery Refrigeration Machine with Carbon Dioxide. Eastern-European Journal of Enterprise Technologies. 2/8 (68), 36–44 (2014), (in Russian).
dc.relation.referencesen10. Tsatsaronis J. The Interaction of Thermodynamics and Economy to Minimize Cost of Energy Conversion Systems. Odessa, Studio "Negotsiant" (2002), (in Russian).
dc.relation.referencesen11. Labay V. Yo., Khanyk Ya. M. Used in Air Split-conditioners Refrigerants R407C and R410A. Scientific and Technical Journal "Refrigeration Engineering and Technology". 3 (113), 13–17 (2008), (in Ukrainian).
dc.relation.referencesen12. Labay V. Yo., Khanyk Ya. M. Energy Saving Ratio Between the Air Flows at the Evaporator and Condenser Air Split-conditioners. Scientific and Technical Journal "Refrigeration Engineering and Technology". 6 (116), 28–31 (2008), (in Ukrainian).
dc.relation.referencesen13. Labay V. Yo., Mysak Yo. S. Adduction of Work of Refrigeration’s Machines of Air Split-conditioners to the Identical Internal Temperature Condition. Scientific and Technical Journal "Refrigeration Engineering and Technology". 4 (126), 19–22 (2010), (in Ukrainian).
dc.relation.referencesen14. Jakobsen A., Rassmussen B.-D., Skovrup M.-J., Andersen S.-E. CoolPack - a collection of simulation tools for refrigeration systemes. Tutorial, Version 1.46. Department of Energy Engineering Technical University of Denmark (2001).
dc.relation.referencesen15. Daikin Catalog Split (2017).
dc.citation.issue2
dc.citation.spage169
dc.citation.epage177
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.subject.udc697.94.(075)
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
2018v5n2_Labay_V-Mathematical_modeling_of_169-177.pdf864.32 kBAdobe PDFView/Open
2018v5n2_Labay_V-Mathematical_modeling_of_169-177__COVER.png418.39 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.