Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46137
Title: Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure
Other Titles: Математична модель оксидації чадного газу: вплив структури поверхні каталізатора
Authors: Костробій, П.
Рижа, І.
Маркович, Б.
Kostrobij, P.
Ryzha, I.
Markovych, B.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Kostrobij P. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure / P. Kostrobij, I. Ryzha, B. Markovych // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 158–168.
Bibliographic description (International): Kostrobij P. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure / P. Kostrobij, I. Ryzha, B. Markovych // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 158–168.
Is part of: Mathematical Modeling and Computing, 2 (5), 2018
Issue: 2
Issue Date: 26-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 538.9
Keywords: каталітична реакція окиснення
реакційно-дифузійна модель
математичне моделювання реакційно-дифузійних процесів
reaction of catalytic oxidation
reaction-diffusion model
mathematical modeling of reaction-diffusion processes
Number of pages: 11
Page range: 158-168
Start page: 158
End page: 168
Abstract: Запропоновано обґрунтовану математичну модель опису реакційно-дифузійних процесів двосортної суміші, адсорбованих на поверхні каталізатора частинок. Показано, що для реакції окиснення чадного газу (СО) запропонована модель узагальнює одновимірну модель ZGB. Досліджено кінетику окиснення СО на стійких щодо перебудови гранях кристала платини (Pt).
A substantiated mathematical model is proposed for describing the reaction-diffusion processes of a binary mixture of particles adsorbed on a catalyst surface. It is shown that the proposed model generalizes the one-dimensional ZGB model for carbon monoxide (CO) oxidation reaction. The kinetics of CO oxidation is investigated on the facets of platinum (Pt) crystal, which are stable with respect to reconstruction.
URI: https://ena.lpnu.ua/handle/ntb/46137
Copyright owner: CMM IAPMM NASU
© 2018 Lviv Polytechnic National University
References (Ukraine): 1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah “metal–gaz”. Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).
2. Kato H. S., Okuyama H., Yoshinobu J., Kawai M. Estimation of direct and indirect interactions between CO molecules on Pd(110). Surf. Sci. 513 (2), 239–248 (2002).
3. Imbihl R., Ertl G. Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews. 95 (3), 697–733 (1995).
4. March N. H. Chemical Bonds Outside Metal Surfaces. Plenum Press, New York (1986).
5. Yucel S. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures. Phys. Rev. B. 39 (5), 3104–3115 (1989).
6] Kostrobij P., Markovych B., Vasylenko A., Tokarchuk M., Rudavskij Y. Nonequilibrium statistical Zubarev’s operator and Green’s functions for an inhomogeneous electron gas. Condens. Matter Phys. 9 (3), 519–533 (2006).
7. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).
8. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications (2000).
9. Wilf M., Dawson P. The adsorption and desorption of oxygen on the Pt(110) surface; A thermal desorption and LEED/AES study. Surf. Science. 65 (2), 399–418 (1977).
10. Gasser R. P. H., Smith E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1, 457–458 (1967).
11. Kafarov V. V. Metody kibernetiki v himii i himicheskoj tehnologii. Himija, Moskva (1976), (in Russian).
12. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986).
13. Kostrobij P., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018).
14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990).
15. Kuchling H. Taschenbuch der Physik. Carl Hanser (Verlag) (2014).
16. Spiel C., Vogel D., Suchorski Y., DrachselW., Schl¨ogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: Local reaction kinetics by PEEM. Catalysis Letters. 141 (5), 625–632 (2011).
17. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Science. 107 (1), 207–219 (1981).
18. Ertl G., Neumann M., Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Science. 64 (2), 393–410 (1977).
19. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf. Science. 107 (1), 220–236 (1981).
20. Gland J. L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12 (111)×(111) surfaces. Surf. Science. 93 (2–3), 487–514 (1980).
21. Kinne M., Fuhrmann T., Zhu J. F., Whelan C. M., Denecke R., Steinr¨uck H. P. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120 (15), 7113–7122 (2004).
22. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
23. Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995).
24. Hoyle R. Pattern Formation. New York, Cambridge University Press (2006).
25. Ehsasi M., Matloch M., Frank O., Block J. H. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91 (8), 4949–4960 (1989).
References (International): 1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah "metal–gaz". Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).
2. Kato H. S., Okuyama H., Yoshinobu J., Kawai M. Estimation of direct and indirect interactions between CO molecules on Pd(110). Surf. Sci. 513 (2), 239–248 (2002).
3. Imbihl R., Ertl G. Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews. 95 (3), 697–733 (1995).
4. March N. H. Chemical Bonds Outside Metal Surfaces. Plenum Press, New York (1986).
5. Yucel S. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures. Phys. Rev. B. 39 (5), 3104–3115 (1989).
6] Kostrobij P., Markovych B., Vasylenko A., Tokarchuk M., Rudavskij Y. Nonequilibrium statistical Zubarev’s operator and Green’s functions for an inhomogeneous electron gas. Condens. Matter Phys. 9 (3), 519–533 (2006).
7. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).
8. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications (2000).
9. Wilf M., Dawson P. The adsorption and desorption of oxygen on the Pt(110) surface; A thermal desorption and LEED/AES study. Surf. Science. 65 (2), 399–418 (1977).
10. Gasser R. P. H., Smith E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1, 457–458 (1967).
11. Kafarov V. V. Metody kibernetiki v himii i himicheskoj tehnologii. Himija, Moskva (1976), (in Russian).
12. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986).
13. Kostrobij P., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018).
14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990).
15. Kuchling H. Taschenbuch der Physik. Carl Hanser (Verlag) (2014).
16. Spiel C., Vogel D., Suchorski Y., DrachselW., Schl¨ogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: Local reaction kinetics by PEEM. Catalysis Letters. 141 (5), 625–632 (2011).
17. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Science. 107 (1), 207–219 (1981).
18. Ertl G., Neumann M., Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Science. 64 (2), 393–410 (1977).
19. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf. Science. 107 (1), 220–236 (1981).
20. Gland J. L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12 (111)×(111) surfaces. Surf. Science. 93 (2–3), 487–514 (1980).
21. Kinne M., Fuhrmann T., Zhu J. F., Whelan C. M., Denecke R., Steinr¨uck H. P. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120 (15), 7113–7122 (2004).
22. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
23. Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995).
24. Hoyle R. Pattern Formation. New York, Cambridge University Press (2006).
25. Ehsasi M., Matloch M., Frank O., Block J. H. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91 (8), 4949–4960 (1989).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
2018v5n2_Kostrobij_P-Mathematical_model_of_158-168.pdf1.46 MBAdobe PDFView/Open
2018v5n2_Kostrobij_P-Mathematical_model_of_158-168__COVER.png367.56 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.