https://oldena.lpnu.ua/handle/ntb/46137
Title: | Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure |
Other Titles: | Математична модель оксидації чадного газу: вплив структури поверхні каталізатора |
Authors: | Костробій, П. Рижа, І. Маркович, Б. Kostrobij, P. Ryzha, I. Markovych, B. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Kostrobij P. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure / P. Kostrobij, I. Ryzha, B. Markovych // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 158–168. |
Bibliographic description (International): | Kostrobij P. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure / P. Kostrobij, I. Ryzha, B. Markovych // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 158–168. |
Is part of: | Mathematical Modeling and Computing, 2 (5), 2018 |
Issue: | 2 |
Issue Date: | 26-Feb-2018 |
Publisher: | Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
UDC: | 538.9 |
Keywords: | каталітична реакція окиснення реакційно-дифузійна модель математичне моделювання реакційно-дифузійних процесів reaction of catalytic oxidation reaction-diffusion model mathematical modeling of reaction-diffusion processes |
Number of pages: | 11 |
Page range: | 158-168 |
Start page: | 158 |
End page: | 168 |
Abstract: | Запропоновано обґрунтовану математичну модель опису реакційно-дифузійних процесів двосортної суміші, адсорбованих на поверхні каталізатора частинок. Показано,
що для реакції окиснення чадного газу (СО) запропонована модель узагальнює одновимірну модель ZGB. Досліджено кінетику окиснення СО на стійких щодо перебудови
гранях кристала платини (Pt). A substantiated mathematical model is proposed for describing the reaction-diffusion processes of a binary mixture of particles adsorbed on a catalyst surface. It is shown that the proposed model generalizes the one-dimensional ZGB model for carbon monoxide (CO) oxidation reaction. The kinetics of CO oxidation is investigated on the facets of platinum (Pt) crystal, which are stable with respect to reconstruction. |
URI: | https://ena.lpnu.ua/handle/ntb/46137 |
Copyright owner: | CMM IAPMM NASU © 2018 Lviv Polytechnic National University |
References (Ukraine): | 1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah “metal–gaz”. Lviv Polytechnic National University, Lviv (2009), (in Ukrainian). 2. Kato H. S., Okuyama H., Yoshinobu J., Kawai M. Estimation of direct and indirect interactions between CO molecules on Pd(110). Surf. Sci. 513 (2), 239–248 (2002). 3. Imbihl R., Ertl G. Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews. 95 (3), 697–733 (1995). 4. March N. H. Chemical Bonds Outside Metal Surfaces. Plenum Press, New York (1986). 5. Yucel S. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures. Phys. Rev. B. 39 (5), 3104–3115 (1989). 6] Kostrobij P., Markovych B., Vasylenko A., Tokarchuk M., Rudavskij Y. Nonequilibrium statistical Zubarev’s operator and Green’s functions for an inhomogeneous electron gas. Condens. Matter Phys. 9 (3), 519–533 (2006). 7. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922). 8. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications (2000). 9. Wilf M., Dawson P. The adsorption and desorption of oxygen on the Pt(110) surface; A thermal desorption and LEED/AES study. Surf. Science. 65 (2), 399–418 (1977). 10. Gasser R. P. H., Smith E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1, 457–458 (1967). 11. Kafarov V. V. Metody kibernetiki v himii i himicheskoj tehnologii. Himija, Moskva (1976), (in Russian). 12. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986). 13. Kostrobij P., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018). 14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990). 15. Kuchling H. Taschenbuch der Physik. Carl Hanser (Verlag) (2014). 16. Spiel C., Vogel D., Suchorski Y., DrachselW., Schl¨ogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: Local reaction kinetics by PEEM. Catalysis Letters. 141 (5), 625–632 (2011). 17. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Science. 107 (1), 207–219 (1981). 18. Ertl G., Neumann M., Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Science. 64 (2), 393–410 (1977). 19. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf. Science. 107 (1), 220–236 (1981). 20. Gland J. L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12 (111)×(111) surfaces. Surf. Science. 93 (2–3), 487–514 (1980). 21. Kinne M., Fuhrmann T., Zhu J. F., Whelan C. M., Denecke R., Steinr¨uck H. P. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120 (15), 7113–7122 (2004). 22. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992). 23. Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995). 24. Hoyle R. Pattern Formation. New York, Cambridge University Press (2006). 25. Ehsasi M., Matloch M., Frank O., Block J. H. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91 (8), 4949–4960 (1989). |
References (International): | 1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah "metal–gaz". Lviv Polytechnic National University, Lviv (2009), (in Ukrainian). 2. Kato H. S., Okuyama H., Yoshinobu J., Kawai M. Estimation of direct and indirect interactions between CO molecules on Pd(110). Surf. Sci. 513 (2), 239–248 (2002). 3. Imbihl R., Ertl G. Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews. 95 (3), 697–733 (1995). 4. March N. H. Chemical Bonds Outside Metal Surfaces. Plenum Press, New York (1986). 5. Yucel S. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures. Phys. Rev. B. 39 (5), 3104–3115 (1989). 6] Kostrobij P., Markovych B., Vasylenko A., Tokarchuk M., Rudavskij Y. Nonequilibrium statistical Zubarev’s operator and Green’s functions for an inhomogeneous electron gas. Condens. Matter Phys. 9 (3), 519–533 (2006). 7. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922). 8. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications (2000). 9. Wilf M., Dawson P. The adsorption and desorption of oxygen on the Pt(110) surface; A thermal desorption and LEED/AES study. Surf. Science. 65 (2), 399–418 (1977). 10. Gasser R. P. H., Smith E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1, 457–458 (1967). 11. Kafarov V. V. Metody kibernetiki v himii i himicheskoj tehnologii. Himija, Moskva (1976), (in Russian). 12. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986). 13. Kostrobij P., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018). 14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990). 15. Kuchling H. Taschenbuch der Physik. Carl Hanser (Verlag) (2014). 16. Spiel C., Vogel D., Suchorski Y., DrachselW., Schl¨ogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: Local reaction kinetics by PEEM. Catalysis Letters. 141 (5), 625–632 (2011). 17. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Science. 107 (1), 207–219 (1981). 18. Ertl G., Neumann M., Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Science. 64 (2), 393–410 (1977). 19. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf. Science. 107 (1), 220–236 (1981). 20. Gland J. L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12 (111)×(111) surfaces. Surf. Science. 93 (2–3), 487–514 (1980). 21. Kinne M., Fuhrmann T., Zhu J. F., Whelan C. M., Denecke R., Steinr¨uck H. P. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120 (15), 7113–7122 (2004). 22. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992). 23. Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995). 24. Hoyle R. Pattern Formation. New York, Cambridge University Press (2006). 25. Ehsasi M., Matloch M., Frank O., Block J. H. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91 (8), 4949–4960 (1989). |
Content type: | Article |
Appears in Collections: | Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2018v5n2_Kostrobij_P-Mathematical_model_of_158-168.pdf | 1.46 MB | Adobe PDF | View/Open | |
2018v5n2_Kostrobij_P-Mathematical_model_of_158-168__COVER.png | 367.56 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.