https://oldena.lpnu.ua/handle/ntb/46136
Title: | The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors |
Other Titles: | Вплив додаткового позадіагонального безладу міжіонної взаємодії на зберігання заряду у субнанопорах супрамолекулярного карбону суперконденсаторів |
Authors: | Клапчук, М. Григорчак, І. Klapchuk, M. Grygorchak, I. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Klapchuk M. The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors / M. Klapchuk, I. Grygorchak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 147–157. |
Bibliographic description (International): | Klapchuk M. The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors / M. Klapchuk, I. Grygorchak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 147–157. |
Is part of: | Mathematical Modeling and Computing, 2 (5), 2018 |
Issue: | 2 |
Issue Date: | 26-Feb-2018 |
Publisher: | Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
UDC: | 541.136.2 |
Keywords: | супрамолекулярні ансамблі нанопористий карбон пориста структура імпедансна спектроскопія діаграма Найквіста 1D модель подвійного електричного шару метод рівнянь руху supramolecular assemblies nanoporous carbon porous structure impedance spectroscopy Nyquist diagram 1D model of EDL equation-of-motion method |
Number of pages: | 11 |
Page range: | 147-157 |
Start page: | 147 |
End page: | 157 |
Abstract: | В роботі методами супрамолекулярної інженерії вперше синтезовано субнанопористий
карбон для ефективного накопичення енергії на межі його розділу з електролітом. Досягнуте
значення диференціальної ємності більш як вдвічі перевищує відповідну величину для відомих карбонових структур. На основі побудованої імпедансної моделі
та мікроскопічної теорії запропоновано фізичні механізми досліджених процесів. In this work, we report sub-nanoporous carbon which is synthesized for the first time by means of supramolecular engineering methods for efficient energy storage at the electrode/electrolyte interface. The achieved value of the differential capacitance more than twice exceeds the corresponding value for the known carbon structures. Based on the constructed impedance model and microscopic theory, the physical mechanisms of the investigated processes are suggested. |
URI: | https://ena.lpnu.ua/handle/ntb/46136 |
Copyright owner: | CMM IAPMM NASU © 2018 Lviv Polytechnic National University |
References (Ukraine): | 1. Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., Lota G., Frackowiak E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50 (5), 1197–1206 (2005). 2. Conway B. Electrochemical Supercapacitors. New York, Plenum Publishing (1999). 3. Abioye A. M., Ani F. N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews. 52, 1282–1293 (2015). 4. David B. Optimization of power and energy densities in supercapacitors. Journal of Power Sources. 195, 748–3756 (2010). 5. Gonzalez A., Goikolea E., Barrena J. A., Mysyk R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58, 1189–2006 (2016). 6. Zhan C., Lian C., Zhang Yu, Thompson M.W., Xie Yu, Wu J., Kent P. R. C., Cummings P. T., Jiang D., Wesolowski D. J. Computational insights into materials and interfaces for capacitive energy storage. Adv. Sci. 4 (7), 1700059 (2017). 7. Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P.-L., Grey C. P., Dunn B., Simon P. Efficient storage mechanisms for building better supercapacitors. Nature Energy. 1, 1–10 (2016). 8. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science. 313, 1760–1763 (2006). 9. Len J. Supramolecular chemistry. Concepts and perspectives. Novosybirsk, Nauka (1998), (in Russian). 10. Stid D., Etvud D. Supramolecular chemisty. Moscow, Akademkniga (2007), (in Russian). 11. Stojnov S. B., Grafov B. M., Savova-Stojnova B., Yelkin V. V. Electrochemical impedance. Moscow, Nauka (1991), (in Russian). 12. Barsoukov E., Macdonald J. Impedance spectroscopy. Theory, experiment and application. Wiley R. Interscience, Canada (2005). 13. Kondrat S., Kornyshev A. Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter. 23, 2–10 (2010). 14. Skinner B., Chen T., Loth M. S., Shklovskii B.I. Theory of volumetric capacitance of an electric double-layer supercapacitor. Phys. Rev. E. 83, 056102 (2011). 15. Merlet A., P´ean C., Rotenberg B., Madden P. A., Daffos B., Taberna P.-L., Simon P., Salanne M. Highly confined ions store charge more efficiently in supercapacitors. Nature Communications. 4, 2701 (2013). 16. Lee A. A., Kondrat S., Kornyshev A. A. Single-File Charge storage in conducting nanopores. Phys. Rev. Lett. 113, 048701 (2014). 17. Rochester C., Sartor A., Pruessner G., Kornyshev A. A. “One dimensional” double layer. The effect of size asymmetry of cations and anions on charge-storage in ultranarrownanopores — an Ising model theory. Russian Journal of Electrochemistry. 53 (10), 1165–1170 (2017). 18. Hu G. Y., O’Connell R. F. Analytical inversion of symmetric tridiagonal matrices. J. Phys: A.: Math. Gen. 29, 1511–1513 (1996). |
References (International): | 1. Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., Lota G., Frackowiak E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50 (5), 1197–1206 (2005). 2. Conway B. Electrochemical Supercapacitors. New York, Plenum Publishing (1999). 3. Abioye A. M., Ani F. N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews. 52, 1282–1293 (2015). 4. David B. Optimization of power and energy densities in supercapacitors. Journal of Power Sources. 195, 748–3756 (2010). 5. Gonzalez A., Goikolea E., Barrena J. A., Mysyk R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58, 1189–2006 (2016). 6. Zhan C., Lian C., Zhang Yu, Thompson M.W., Xie Yu, Wu J., Kent P. R. C., Cummings P. T., Jiang D., Wesolowski D. J. Computational insights into materials and interfaces for capacitive energy storage. Adv. Sci. 4 (7), 1700059 (2017). 7. Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P.-L., Grey C. P., Dunn B., Simon P. Efficient storage mechanisms for building better supercapacitors. Nature Energy. 1, 1–10 (2016). 8. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science. 313, 1760–1763 (2006). 9. Len J. Supramolecular chemistry. Concepts and perspectives. Novosybirsk, Nauka (1998), (in Russian). 10. Stid D., Etvud D. Supramolecular chemisty. Moscow, Akademkniga (2007), (in Russian). 11. Stojnov S. B., Grafov B. M., Savova-Stojnova B., Yelkin V. V. Electrochemical impedance. Moscow, Nauka (1991), (in Russian). 12. Barsoukov E., Macdonald J. Impedance spectroscopy. Theory, experiment and application. Wiley R. Interscience, Canada (2005). 13. Kondrat S., Kornyshev A. Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter. 23, 2–10 (2010). 14. Skinner B., Chen T., Loth M. S., Shklovskii B.I. Theory of volumetric capacitance of an electric double-layer supercapacitor. Phys. Rev. E. 83, 056102 (2011). 15. Merlet A., P´ean C., Rotenberg B., Madden P. A., Daffos B., Taberna P.-L., Simon P., Salanne M. Highly confined ions store charge more efficiently in supercapacitors. Nature Communications. 4, 2701 (2013). 16. Lee A. A., Kondrat S., Kornyshev A. A. Single-File Charge storage in conducting nanopores. Phys. Rev. Lett. 113, 048701 (2014). 17. Rochester C., Sartor A., Pruessner G., Kornyshev A. A. "One dimensional" double layer. The effect of size asymmetry of cations and anions on charge-storage in ultranarrownanopores - an Ising model theory. Russian Journal of Electrochemistry. 53 (10), 1165–1170 (2017). 18. Hu G. Y., O’Connell R. F. Analytical inversion of symmetric tridiagonal matrices. J. Phys: A., Math. Gen. 29, 1511–1513 (1996). |
Content type: | Article |
Appears in Collections: | Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2018v5n2_Klapchuk_M-The_effect_of_additional_147-157.pdf | 1.32 MB | Adobe PDF | View/Open | |
2018v5n2_Klapchuk_M-The_effect_of_additional_147-157__COVER.png | 421.61 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.