Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46135
Title: Mathematical model of optimization of annealing regimes by the stress state for heat-sensitive glass elements of structures
Other Titles: Математична модель оптимізації за напруженим станом режимів відпалу термочутливих скляних елементів конструкцій
Authors: Гачкевич, О.
Гачкевич, М.
Торський, А.
Дмитрук, В.
Hachkevych, O.
Hachkevych, M.
Torskyy, A.
Dmytruk, V.
Affiliation: Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
Політехніка Опольска
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
Національний університет “Львівська політехніка”
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
Opole University of Tecnnology
Centre of Mathematical Modelling IAPMM of Ukranian National Academy of Sciences
Lviv Polytechnic National University
Bibliographic description (Ukraine): Mathematical model of optimization of annealing regimes by the stress state for heat-sensitive glass elements of structures / O. Hachkevych, M. Hachkevych, A. Torskyy, V. Dmytruk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 134–146.
Bibliographic description (International): Mathematical model of optimization of annealing regimes by the stress state for heat-sensitive glass elements of structures / O. Hachkevych, M. Hachkevych, A. Torskyy, V. Dmytruk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 134–146.
Is part of: Mathematical Modeling and Computing, 2 (5), 2018
Issue: 2
Issue Date: 26-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 539.3
Keywords: теплові режими в виробничих процесах
оптимізація відносно напруженого стану
термочутливі скляні елементи
thermal regimes in production processes
optimization of relatively stressed state
thermosensitive glass elements
Number of pages: 13
Page range: 134-146
Start page: 134
End page: 146
Abstract: Побудовано математичну модель і розв’язано задачу оптимізації режимів відпалу термочутливих скляних елементів конструкцій з використанням числових методів і варіаційного числення. Як приклад побудовано і проаналізовані оптимальні режими відпалу конкретних скляних пластин за різних значень допустимих напружень.
A mathematical model is constructed and a problem of optimization of annealing regimes of thermosensitive glass elements of constructions with the use of numerical methods and variational calculus is solved. As an example, the optimal regimes of annealing of specific glass plates for different values of permissible stresses are constructed and analyzed.
URI: https://ena.lpnu.ua/handle/ntb/46135
Copyright owner: CMM IAPMM NASU
© 2018 Lviv Polytechnic National University
References (Ukraine): 1. Grigolyuk E., Podstrigach Ya., Burak Ya. Optimization of heating of shells and plates. Kiev, Naukova dumka (1979), (in Russian).
2. Biswas P. Thermal Stresses, Deformations and Vibrations of Plates and Shells — A Nonlinear Approach. Procedia Engineering. 144, 1023–1030 (2016).
3. Podstrigach Ya., Kolyano Yu., Semerak M. Temperature fields and stresses in elements of electrovacuum devices. Kiev, Naukova dumka (1981), (in Russian).
4. Carrera E., Fazzolari F., Cinefra M. Thermal Stress Analysis of Composite Beams, Plates and Shells. Computational Modelling and Applications. Massachusetts, Academic Press (2016).
5. Bartenev H. Mechanical properties and heat treatment of glass. Moscow, Stroyizdat (1960), (in Russian).
6. Bartenev H. High-strength and highly-strength inorganic glasses. Moscow, Stroyizdat (1974), (in Russian).
7. Pukh V. Strength and destruction of glass. Moscow, Nauka (1973), (in Russian).
8. Solntsev S., Morozov E. The destruction of glass. Moscow, Mechanical Engineering (1978), (in Russian).
9. Budz S., Gachkevich N. Optimization of heat treatment of piecewise homogeneous shells of ELB with allowance for the temperature dependence of the material characteristics. Physico-chemical mechanics of materials. 5, 111–113 (1987), (in Russian).
10. Chernousko F., Banichuk N. Variational problems of mechanics and control. Moscow, Nauka (1973), (in Russian).
11. Norry D., Freese J. An Introduction to the Finite Element Method. Moscow, Mir (1981).
12. Gachkevich O., Gachkevich M., Budz S. Optimization under the stress state of the heating modes of glass lump-homogeneous membranes. Lviv, Pidstryhach Institute for Applied Problems of Mech. and Math., National Academy of Sciences of Ukraine (2014), (in Ukrainian).
13. Korn G., Korn T. Reference on mathematics. Moscow, Nauka (1974).
14. Marchuk G. Methods of computational mathematics. Moscow, Nauka (1977), (in Russian).
15. Gachkevich M., Gachkevich O., Torskyy A., Dmytruk V. Mathematical models and methods of optimization of technological heating regimes of the piecewise homogeneous glass shell. State-of-the-art investigations. Mathematical Modeling and Computing. 2 (2), 140–153 (2015).
16. Baranovsky V., Gusev V., Ivanov V. and others. Production of color kinescopes. Ed. Baranovsky V. Moscow, Energia (1978), (in Russian).
References (International): 1. Grigolyuk E., Podstrigach Ya., Burak Ya. Optimization of heating of shells and plates. Kiev, Naukova dumka (1979), (in Russian).
2. Biswas P. Thermal Stresses, Deformations and Vibrations of Plates and Shells - A Nonlinear Approach. Procedia Engineering. 144, 1023–1030 (2016).
3. Podstrigach Ya., Kolyano Yu., Semerak M. Temperature fields and stresses in elements of electrovacuum devices. Kiev, Naukova dumka (1981), (in Russian).
4. Carrera E., Fazzolari F., Cinefra M. Thermal Stress Analysis of Composite Beams, Plates and Shells. Computational Modelling and Applications. Massachusetts, Academic Press (2016).
5. Bartenev H. Mechanical properties and heat treatment of glass. Moscow, Stroyizdat (1960), (in Russian).
6. Bartenev H. High-strength and highly-strength inorganic glasses. Moscow, Stroyizdat (1974), (in Russian).
7. Pukh V. Strength and destruction of glass. Moscow, Nauka (1973), (in Russian).
8. Solntsev S., Morozov E. The destruction of glass. Moscow, Mechanical Engineering (1978), (in Russian).
9. Budz S., Gachkevich N. Optimization of heat treatment of piecewise homogeneous shells of ELB with allowance for the temperature dependence of the material characteristics. Physico-chemical mechanics of materials. 5, 111–113 (1987), (in Russian).
10. Chernousko F., Banichuk N. Variational problems of mechanics and control. Moscow, Nauka (1973), (in Russian).
11. Norry D., Freese J. An Introduction to the Finite Element Method. Moscow, Mir (1981).
12. Gachkevich O., Gachkevich M., Budz S. Optimization under the stress state of the heating modes of glass lump-homogeneous membranes. Lviv, Pidstryhach Institute for Applied Problems of Mech. and Math., National Academy of Sciences of Ukraine (2014), (in Ukrainian).
13. Korn G., Korn T. Reference on mathematics. Moscow, Nauka (1974).
14. Marchuk G. Methods of computational mathematics. Moscow, Nauka (1977), (in Russian).
15. Gachkevich M., Gachkevich O., Torskyy A., Dmytruk V. Mathematical models and methods of optimization of technological heating regimes of the piecewise homogeneous glass shell. State-of-the-art investigations. Mathematical Modeling and Computing. 2 (2), 140–153 (2015).
16. Baranovsky V., Gusev V., Ivanov V. and others. Production of color kinescopes. Ed. Baranovsky V. Moscow, Energia (1978), (in Russian).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
2018v5n2_Hachkevych_O-Mathematical_model_of_134-146.pdf1.33 MBAdobe PDFView/Open
2018v5n2_Hachkevych_O-Mathematical_model_of_134-146__COVER.png409.69 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.